
Ratio Mathematica Volume 38, 2020, pp. 5-69

Studies on A. Einstein , B. Podolsky and
N. Rosen argument that ”quantum

mechanics is not a complete theory,” I:
Basic methods

Ruggero Maria Santilli∗

Abstract

In 1935, A. Einstein expressed his view, jointly with B. Podolsky and
N. Rosen, that ”quantum mechanics is not a complete theory” (EPR
argument). Following decades of preparatory studies, R. M. Santilli
published in 1998 a paper showing that the objections against the
EPR argument are valid for point-like particles in vacuum (exterior
dynamical systems), but the same objections are inapplicable (rather
than being violated) for extended particles within hyperdense phys-
ical media (interior dynamical systems) because the latter systems ap-
pear to admit an identical classical counterpart when treated with
the isotopic branch of hadronic mathematics and mechanics. In a
more recent paper, Santilli has shown that quantum uncertainties of
extended particles appear to progressively tend to zero when in the
interior of hadrons, nuclei and stars, and appear to be identically null
at the limit of gravitational collapse, essentially along the EPR argu-
ment. In this first paper, we review, upgrade and specialize the basic
mathematical, physical and chemical methods for the study of the
EPR argument. In two subsequent papers, we review the above re-
sults and provide specific illustrations and applications.
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1. INTRODUCTION.
1.1. The EPR argument.
As it is well known, quantum mechanics does not admit classical preci-
sion in the measurement of the position or the mutual distance of particles
(Figure 1) in view of Heisenberg’s uncertainty principle and other physical
laws.

Albert Einstein did not accept this uncertainty as being final for all pos-
sible conditions existing in the universe and made his famous quote “God
does not play dice with the universe.”

More specifically, Einstein accepted quantum mechanics for atomic struc-
tures and other systems of point-like particles in vacuum (conditions known
as exterior dynamical problems), but believed that quantum mechanics is an
“incomplete theory,” in the sense that it could admit a “completion” into
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Figure 1: In this figure, we present a conceptual rendering of the sole representation of
particles permitted by the differential calculus underlying quantum mechanics, namely,
the representation as isolated points in empty space which particles, being dimensionless,
can only be at a distance, with ensuing EPR argument on the need for superluminal
interactions to explain quantum entanglement [1].

such a form to recover classical determinism at least under limit condi-
tions.

Einstein communicated his view to the post doctoral associates, B. Podol-
sky and N. Rosen at the Institute for Advanced Study, Princeton, NJ, and
all three together published in the 1935, May 15th issue of the Physical
Review, the paper entitled ”Can Quantum Mechanical Description of Physical
reality be Considered Complete?” which paper became known as the EPR
argument [1].

Soon after the appearance of paper [1], N. Bohr published paper [2] ex-
pressing a negative judgment on the possibility of “completing” quantum
mechanics along the EPR argument.

Bohr’s paper was followed by a variety of papers essentially support-
ing Bohr’s rejection of the EPR argument, among which we recall Bell’s
inequality [3] establishing that the SU(2) spin algebra does not admit limit
values with an identical classical counterpart.

We should also recall von Neumann theorem [4] achieving a rejection of
the EPR argument via the uniqueness of the eigenvalues of quantum me-
chanical Hermitean operators under unitary transforms.

The field became known as local realism and was centered on the rejec-
tion of the EPR argument on claims of lack of existence of hidden variables
λ [5] in quantum mechanics (see the review [6] with a comprehensive litera-
ture).

Nowadays, the EPR argument is generally ignored in view of the wide-
spread belief that quantum mechanics is universally valid for whatever
conditions may exist in the universe without any scrutiny of the limita-
tions and/or insufficiencies of quantum mechanics in various fields re-
viewed in this section.
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Figure 2: A conceptual rendering of the main assumption of the apparent proofs [7] [8]
of the EPR argument [1], consisting in the representation of particles as extended, de-
formable and hyperdense in conditions of mutual overlapping with ensuing continuous
contact at a distance eliminating the need for superluminal interactions to explains quan-
tum entanglement. Despite its simplicity, the quantitative treatment of said view required
decades of studies due to the need for a “completion” of the mathematics underlying
quantum mechanics. Intriguingly, the “completion” here considered turned out to be of
isotopic/axiom-preserving type, thus being fully admitted by quantum mechanical axioms,
merely subjected to a realization broader than that of the Copenhagen school.

1.2. Apparent proofs of the EPR argument.
In Vol. 50, pages 177-190, 1998, of Acta Applicandae Mathematica, R. M.
Santilli published paper [7] entitled “Isorepresentation of the Lie-isotopic
SU(2) Algebra with Application to Nuclear Physics and Local Realism,”
which paper appears to confirm Einstein’s view on the existence of a “com-
pletion” of quantum mechanics into the isotopic branch of hadronic mechan-
ics, or isomechanics for short and a “completion” of quantum chemistry
into a form known as isochemistry. These “completions” are based on a
broadening of applied mathematics known as isomathematics and admit
progressive conditions of particles in the interior of hadrons, nuclei, stars
and black holes that appear to recover classical determinism.

The proof presented in paper [7] was done via the following three main
steps:

1.2.1. The proof that Bell’s inequality, von Neumann’s theorems and
other similar objections of the EPR argument [6] are indeed correct, but
under the generally tacit assumptions:

A) The point-like approximation of particles moving in vacuum (Fig-
ure 1);

B) The sole admission of Hamiltonian interactions [18];
C) The treatment of assumptions A and B via 20th century applied

mathematics, including Lie’s theory and the Newton-Leibnitz differential
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Figure 3: An illustration of the central objective for the proof of the EPR argument con-
sisting in the transition from the quantum mechanical representation of the Newtonian
notion of massive points moving in vacuum under linear, local and potential interac-
tions (top view), to the time invariant representation of extended particles moving within
physical media under linear and non-linear, local and non-local and potential as well as
non-potential interactions (bottom view).

calculus;
1.2.2. The proof that the above treatments are not applicable to Ein-

stein’s vision on the existence of a “completion” of quantum mechanics
based on the following assumptions:

A’) The representation of extended, therefore deformable and hyper-
dense particles under conditions of mutual penetration/entanglement known
(Figure 2) as occurring in the structure of hadrons, nuclei, stars and black
holes (systems known as interior dynamical problems);

B’) The emergence under condition A’ of Hamiltonian as well as contact
non-Hamiltonian interactions of non-linear, non-local and non-potential
character;

C’) The treatment of assumptions A’ and B’ via isomathematics that, as
we shall see in Section 2, is based on:

i) The axiom-preserving isotopy ab = ab→ a?b = aT̂ b of the associative
product ab between generic quantities a, b (numbers, functions, operators,
etc.), where T̂ is a positive-definite quantity called the isotopic element rep-
resenting the dimension, deformability and density of particles;

ii) The ensuing axiom-preserving “completion” of Lie’s theory with
isotopic product [x̂,y] = x ? y − y ? x between Hermitean operators x, y;

iii) The reconstruction of the 20th century applied mathematics into a
form compatible with isoproduct a?b, including most importantly the iso-
topic lifting of the Newton-Leibnitz differential calculus from its centuries
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Figure 4: A first illustration of the lack of “completion” of quantum mechanics beyond
scientific doubt is the time reversal invariance of the theory with equal probability for
events forward and backward in time. Such a time reversibility is acceptable for atomic
structures, particles in accelerators, crystals and other reversible systems, but it does not
allow a consistent physical or chemical representation of energy-releasing process, such
as the coal burning depicted in this figure. In fact, the time reversal image of coal burning
implies that smoke must reconstruct coal with evident violation of causality.

old definition at isolated points to its definition in the volumes of particles
represented by T̂ .

1.2.3. The proof that the Lie-isotopic ŜU(2) algebra with isoproduct
[x̂,y] admits limit conditions with an identical classical counterpart.

More recently, R. M. Santilli completed the above proof in paper [8] by
showing that, under the above indicated conditions, the standard devia-
tions for coordinates ∆r and momenta ∆p appear to progressively tend to
zero for extended particles within hadrons, nuclei and stars, and appear
to be identically null for extended particles within the limit conditions in
the interior of gravitational collapse, essentially along Einstein’s vision.

It should be noted that the above proofs of the EPR argument are cen-
tered in the preservation of the basic axioms of quantum mechanics, only
submitted to their broadest possible realization.

It should be also noted that, under said broadest possible realization,
quantum axioms do admit an explicit and concrete realization of hidden vari-
ables embedded in the structure of the Lie-isotopic product [x̂,y] = xT̂ y −
yT̂x, for instance, via realization T̂ = Diag.(λ, 1/λ), DetT̂ = 1 [7].
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1.3. Insufficiencies of quantum mechanics for irreversible pro-
cesses.
One of the insufficiencies of quantum mechanics well known since the
1930’s is the inability to represent physical or chemical energy releasing
processes, such as nuclear fusions, fuel combustion and other processes.

This is due to the fact that energy releasing processes are irreversible
over time (namely, the time reversal image of the processes violates causal-
ity), while quantum axioms were conceived for and remain solely appli-
cable to systems reversible over time (namely, the time reversal image of the
systems verifies causality), such as atomic structures, particles in accelera-
tors, crystals and other systems (Figure 4).

It is hoped that the ongoing alarming deterioration of our environment,
with the consequential need for new clean energies, illustrate the need for
a “completion” of quantum mechanics for irreversible processes outlined
for completeness in Section 2.

It should be indicated that, except for the short presentation in Section
2, this and the following paper are solely devoted to the apparent proofs
of the EPR argument for reversible interior systems, while the study for
the broader irreversible interior systems is done elsewhere (see Refs. [9] to
[83]).

This is due to the fact that the objections against the EPR argument
were formulated for reversible exterior systems. Consequently, proofs [7]
and [8] studied in these papers were formulated for reversible interior sys-
tems.

1.4. Insufficiencies of quantum mechanics in particle physics.
Quantum mechanics is justly considered to be exactly valid for the structure
of the hydrogen atom because it achieved a numerically exact representa-
tion of all experimental data for the system considered.

It is hoped serious scholars will admit that quantum mechanics can-
not be considered as being exactly valid for particle physics because of
the known inability to achieve an exact representation of all experimental
data of any given family of particles, despite the admission of a number of
hypothetical neutrinos and other ad hoc conjectures.

Recall that, with the exception of electrons, protons and the hypothet-
ical neutrinos, all particles produced by contemporary accelerators are struc-
turally irreversible because unstable, thus being outside the capability of a full
representation via quantum mechanics (Section 1.3), e.g., because they require a
covering Lie-admissible (rather the Lie) treatment. [22] [23].

Additionally, quantum mechanics is completely inapplicable (rather
than violated) for the most fundamental synthesis in nature, that of the
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Figure 5: A conceptual rendering of the synthesis of the neutron as a “compressed hydro-
gen atom” in the core of stars according to H. Rutherford [84], which synthesis cannot be
represented by quantum mechanics due to a mass excess and other reasons (see Section
1.4). By contrast, all characteristics of the neutron in said synthesis have been represented
at the non-relativistic and relativistic levels by the “completion” of 20th century applied
mathematics and physics studied in this paper (Refs. [85] [95]).

neutron from a proton and an electron as occurring in the core of stars
[84], with ensuing inapplicability to the synthesis of other particles, such
as that of the π0 meson from the positronium [17].

This is due to the fact that quantum mechanical axioms have been con-
ceived for the synthesis of particles in which the mass of the final state is
smaller than the sum of the masses of the original constituents, resulting in
the well known mass defect caused by negative potentials.

By contrast, the mass of the neutron En = 939.565 MeV is 0.782 MeV
bigger than the sum of the masses of the proton Ep = 938.272 MeV and of
the electron Ee = 0.511 MeV , resulting in a mass excess requiring a posi-
tive potential for which Schrödinger, Dirac and other quantum mechanical
equations admit no physically meaningful solutions, with similar cases
occurring for the synthesis of other particles [17].

The inability by quantum mechanics to represent the fundamental syn-
thesis of the neutron in a star is ultimately due to the point-like character-
ization of particles since it is mathematically and physically impossible to
fuse together two point-like particles (the proton and the electron) into a
third point-like particle (the neutron).

In turn, this insufficiency identified the need for the representation of
hadrons as extended, deformable and hyperdense, which representation
is at the foundation of the EPR proof [7].
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Another insufficiency of quantum mechanics is its sole capability of
representing linear interactions (i.e., interactions linear in the wave func-
tion). By contrast, the sole known possibility of achieving a bound state
with excess mass is that via the admission of non-linear, generally non-
Hamiltonian interactions for extended particles in conditions of mutual
penetration/entanglement, as it is the case for the electron when totally
compressed inside the proton [16] [17].

In turn, non-linear interactions are crucial for the “completion of the
wavefunction” advocated by Einstein, Podolsky and Rosen [1] as we shall
see in Paper III of this series.

It is nowadays known that the above insufficiencies originate from the
theory at the foundation of quantum mechanics, Lie’s theory, because said
theory solely admits Hamiltonian linear interactions [19].

It is hoped that the above insufficiencies illustrate the significance of
the “completion” of Lie’s theory used for the proof of the EPR argument
[7].

In fact, only following the achievement of a “completion” of 20th cen-
tury mathematical and physical methods for extended, deformable and
hyperdense particles in interior dynamical conditions, Santiili achieved a
numerically exact representation of all— characteristic of the neutron in its
synthesis from a proton and an electron at the non-relativistic (Refs. [85]
to [87]), relativistic (Refs. [88] to [89]) and experimental (Refs. [90] to [95])
levels (see Sections 2, 3 and Paper II of this series).

1.5. Insufficiencies of quantum mechanics in nuclear physics.
There is no doubt that quantum mechanics has permitted historical achieve-
ments in nuclear physics.

However, quantum mechanics is only approximately valid in nuclear
physics because of the inability to achieve over the last century a repre-
sentation of the characteristics of the simplest nucleus, the deuteron, with
embarrassing deviations of the prediction of the theory from experimental
data for heavier nuclei, such as the Zirconium [59].

In Santilli’s view, the primary reason for the indicated insufficiency is
that the mathematics underlying quantum mechanics, with particular ref-
erence to the Newton-Leibnitz differential calculus, imply the conception of
nuclei as ideal spheres with isolated points in its interior (Figure 6) while
in the physical reality, nuclei are composed by extended and hyperdense
protons and neutrons in conditions of partial mutual penetration estab-
lished by the comparison of nuclear volumes with the constituent volumes
[59] (Figure 7).

The inability to represent nuclei as they are in the physical reality im-
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Figure 6: The mathematics underlying quantum mechanics is local-differential, thus
solely admitting a point-like approximation of particles. This figure illustrates the conse-
quential conception of nuclei as ideal spheres with isolated points in their interior with
ensuing insufficiencies beyond scientific doubt.

plies the inability to achieve an exact representation of nuclear magnetic
moments. In fact, the quantum mechanical representation of the anoma-
lous magnetic moment of the deuteron still misses 1 % despite all possible
relativistic or quark-based corrections.

Additionally, quantum mechanics misses much bigger percentages of
nuclear magnetic moments for heavier nuclei (as illustrated in Figure 8).

In turn, the inability to represent protons and neutrons as extended
charge distributions implies the inability to represent deformations under
strong nuclear forces, with related deformation of their angular momenta.

In fact, J. M. Blatt and V. F. Weisskopf state on page 31 of their treatise
in nuclear physics [96]: It is possible that the intrinsic magnetism of a nucleon
is different when it is in close proximity to another nucleon (Figure 9).

The representation of nucleons as extended, thus deformable and hy-
perdense charge distributions via the “completion of 20th century math-
ematics (Section 2) and physics (Section 3) has permitted the exact repre-
sentation of the anomalous magnetic moment of the deuteron [97], as well
as of heavier nuclei [98].

It should be noted that the representation of nuclear magnetic mo-
ments is presented in Ref. [7] as an illustration of the implications of the
proof of the EPR arguments for extended particles in interior conditions.

A second insufficiency of quantum mechanics in nuclear physics is the
lack of a consistent representation of nuclear spins despite efforts also con-
ducted for about one century.
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Figure 7: A conceptual rendering of nuclei as they occur in the physical reality, i.e., a col-
lection of extended and hyperdense protons and neutrons in conditions of partial mutual
penetration, with ensuing non-linear, non-local and non-potential interactions beyond any
dream of quantitative treatment via quantum mechanics.

Recall that the proton and the neutron have both spin 1/2 and that the
only stable bound state predicted by quantum mechanics between two
particles with spin 1/2 is the singlet with spin 0.

Therefore, quantum mechanics predicts that the deuteron in its ground
state must have spin 0, while experimental data establish that the deuteron
has spin 1.

In an attempt of salvaging quantum mechanics, the spin of the deuteron
is generally represented via a combination of excited orbital states which,
even though significant, does not represent the spin 1 of the deuteron in its
ground state.

The achievement of the synthesis of the neutron (Refs. [85] to [95]) has
permitted a resolution of the above impasse because the deuteron emerges
as being a three-body state composed by two protons and one exchange electron,
with ensuing spin 1 in the ground state [59].

Subsequent studies by A. A. Bhalekar and R. M. Santilli [100] based
on the “completion” of 20th century mathematical and physical methods
have achieved a representation of the spin of stable nuclei in their bound
state.

It should be finally noted that the biggest insufficiency of quantum me-
chanics in nuclear physics is given by the inability to achieve a consistent
representation of nuclear forces in one century of efforts.

This is due to the fact that the sole forces permitted by quantum me-
chanics are of potential, thus of action- at-a-distance type, which is solely
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Figure 8: A view of the experimental data of nuclear magnetic moments that cannot be
exactly represented by quantum mechanics. Similar insufficiencies exist for nuclear spins.

Figure 9: A conceptual rendering of the deformability of protons and neutrons under
strong nuclear interactions predicted by J. M. Blatt and V. F. Weisskopf [96] as being the
origin of the inability by quantum mechanics to represent nuclear magnetic moments.
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Figure 10: This picture depicts the hydrogen molecule at absolute zero degree temper-
ature to illustrate the fact that, despite historical achievements, quantum mechanics and
chemistry have been unable to identify the force attracting identical electrons in valence
bonds, because the sole admitted forces are of potential-Coulomb type, thus implying a
repulsion in valence bonds with ensuing lack of a “complete” representation of molecular
structures [60].

possible, mathematical and physical conception for nuclei as ideal spheres
with point-like particles in their interior (Figure 6).

One of the most important applications of the new methods studied in
this work is that of representing nuclear forces as being non-linear, non-
local and non-potential forces due to the mutual penetration/entanglement
of the charge distribution of the hyperdense nucleons. The latter forces
have emerged as being strongly attractive thus allowing the first known
initiation of the understanding of the charge independence of nuclear forces
[59].

1.6. Insufficiencies of quantum mechanics in chemistry.
Without doubt, quantum mechanics and chemistry have permitted chem-
ical discoveries of historical proportions. Hence, the historical and scien-
tific value of quantum chemistry is out of question.

Yet, it is the fate of all theories to admit, with the advancement of scien-
tific knowledge, suitable coverings and this is the fate of quantum chem-
istry as well.

In fact, on strict scientific grounds quantum chemistry is only approxi-
mately valid in chemistry, thus admitting a suitable “completion,” because
of the inability in one century of efforts to achieve an exact representation
of molecular experimental data from first axiomatic principles without ad
hoc form factors and other adaptations.

Recall that quantum mechanics has achieved a numerically exact rep-
resentation of all experimental data of the hydrogen atom.

By contrast, when two hydrogen atoms are bonded into the hydrogen
molecule H2, quantum mechanics and chemistry still miss the represen-
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Figure 11: This picture depicts the hydrogen molecule at absolute zero degree tempera-
ture with the strongly attractive force between identical valence electrons permitted by the
representation of valence pairs as being composed by electrons with extended wavepack-
ets in conditions of mutual penetration/entanglement with ensuing non-linear, non-local
and non-potential interactions that result to be so strongly attractive [17] to overcome
repulsive Coulomb forces [60]. The mutual distance d of said valence pair approaches
Einstein’s classical determinism and achieves it fully when it is in the interior of black
holes [7].

tation of 1 % of the H2 binding energy, which is not insignificant since it
corresponds to about 940 kcal/mole.

An in depth study of the impasse has shown that the above insuffi-
ciency is due to the inability by quantum mechanics and chemistry to represent
the attractive force between identical valence electrons in molecular bonds (Fig-
ure 10) because according to basic axioms, two identical valence electrons
must repel each other according to quantum mechanics and chemistry due to their
equal charge [60].

As it had been the case for other problems, the primary difficulty to
achieve an attractive force between identical valence electrons was of math-
ematical rather than of physical or chemical character, because quantum
mechanics and chemistry solely admit potential forces that, in this case,
can only be of repulsive Coulomb type.

By contrast, the sole possibility of resolving the impasse was the rep-
resentation of electrons as extended wavepackets, that when in conditions
of mutual penetration at 1 fm mutual distance, admit contact, non-linear,
non-local and non-potential interactions of Hulten type.

These new interactions result to be so strong to “absorb” repulsive
Coulomb forces resulting in the needed attraction [60] (Figure 11).

The new valence force was first identified in Table 5 of the 1978 paper
[17] as responsible for the birth of strong interactions in the synthesis of
the π0 meson from an electron and a positron.

In 1995, A. O. E. Animalu and R. M. Santilli published paper [101] es-
tablishing that the Hulten force of paper [17] is so strong to account for the

19



Ruggero Maria Santilli

bond of the two identical electrons in the Cooper pair of superconductiv-
ity.

A generalization of superconductivity based on the new methods was
then developed and it is today known as Animalu isosuperconductivity [102].

In 2000, R. M. Santilli and D. D. Shillady showed that valence electron
pairs with a strongly attractive force, called isoelectronia, permit numeri-
cally exact representations from first axiomatic principles of experimental
data on the hydrogen [103] and water [104] molecule, which representa-
tion had escaped quantum chemistry for about one century (see also re-
view [105]).

The achievement of a new model of molecular structures based on
the isoelectronium valence bond has permitted novel advances in larger
molecules whose study has been initiated by A. A. Bhalekar and R. M.
Santilli [106] with intriguing implications, e.g., possible improvements in
the combustion of fossil fuels based on a more accurate representation of
their molecular structure [53].

Additionally, Santilli and Shillady showed that perturbative series of the
resulting “completion” of quantum chemistry converge at least one thousand
times faster than the corresponding series of quantum chemistry (see Section
4.13).

1.7. Implications of the EPR argument.
It is hoped that the preceding sections have indicated the truly vast im-
plications for all quantitative sciences of Einstein’s view that “quantum
mechanics is not a complete theory” [1], thus warranting due scientific
process.

In this paper we outline the main aspects of the new mathematical
and physical methods underlying proof [7], with the understanding that
a technical knowledge can be solely achieved via a study of the original
literature.

The reader should be aware that the literature accumulated in half a
century of research in the field by numerous scientists is rather vast. Con-
sequently, in this paper we can only quote the most important original
contributions and provide comprehensive references for interested read-
ers.

2. LIE-ADMISSIBLE “COMPLETION” OF 20TH CENTURY
APPLIED MATHEMATICS.
2.1. Foreword.
R. M. Santilli never accepted quantum mechanics as a “complete” theory
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beginning with his graduate studies in physics at the University of Torino,
Italy, in the mid 1960’s because quantum axioms are invariant under time
reversal, due to the invariance under anti-Hermiticity of the Lie product
between Hermitean operators

[x, y] = −[x, y]†, (1)

and other physical laws.
By recalling the fundamental character of Lie’s theory, it follows that

the mathematics (more than physical laws) underlying quantum mechan-
ics does not allow a consistent representation of nuclear fusions and other
physical or chemical energy releasing processes, due to their known irre-
versibility over time (Figure 4).

2.2. The historical teachings by Lagrange and Hamilton.
In view of the above lack of “completeness” of quantum mechanics, R.
M. Santilli initiated his Ph. D. studies with the reading of the original
works by J. L. Lagrange and studying his true analytic equations, those
with external terms [9]

d

dt

∂L(r, v)

∂v
− ∂L(r, v)

∂r
= Fak(t, r, v), (2)

as well as the true Hamilton’s equations, those with external terms [10]

dr
dt

= ∂H(r,p)
∂p

,

dp
dt

= −∂H(r,p)
∂r

+ F (t, r, p),

(3)

where the Lagrangian L and Hamiltonian H were used to represent con-
servative and potential, thus notoriously reversible forces, while the irre-
versibility of nature was represented with their external forces F .

2.3. The “No Reduction Theorem.”
The external terms have been truncated in the 20th century sciences on
claims that irreversible systems can be decomposed into their elementary
particle constituents at which level the validity of quantum mechanics is
fully recovered.

However, Santilli proved the following theorem as part of his Ph. D.
thesis (see Refs. [56] [25]).

THEOREM 2.3.1 (No reduction Theorem): A macroscopic time irreversible sys-
tem cannot be consistently decomposed into a finite number of quantum mechan-
ical particles and vice versa, a finite collection of quantum mechanical particles
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cannot reproduce a macroscopic irreversible system under the correspondence or
other principle.

Consequently, a serious study of irreversible systems requires a re-
turn to the true Lagrange’s and Hamilton’s equations, those with external
terms.

2.4. The inevitability of the Lie-admissible “completion” of 20th
century science.
As it is well known, the true Lagrange and Hamilton equations cannot be
assumed as a “completion” of 20th century sciences because they are not
derivable from a potential.

Additionally, the brackets of the time evolution of an observableQ rep-
resented via Hamilton’s equations with external terms

dA
dt

= (Q,H, F ) =

= ∂Q
∂r

∂H
∂p
− ∂H

∂r
∂Q
∂p

+ ∂Q
∂r
F,

(4)

characterizes the triple system (Q,H, F ) that, in view of the external terms,
violate the right scalar and associative axioms to characterize an algebra
as currently understood in mathematics.

In the absence of a consistent algebra in the brackets of the time evolu-
tion, it was not possible to achieve a “completion” of quantum mechanics
via a covering for irreversible systems.

Hence, Santilli was forced to seek the needed “completion” on alge-
braic grounds.

Following a year of research in the European mathematics libraries,
Santilli did his Ph. D. thesis in 1965 on the “completion” of Lie algebras
into A. A. Albert’s Lie-admissible and Jordan-admissible algebras [11] with
product [12]

(a, b) = pab− qba, (5)

later on known as (p, q)-deformations [13], where p, q, p ± q are non-null
scalars, and time irreversibility is assured for p 6= q for which irreversib-
lity is ensured for p 6= q by the property (x, y) 6= − (x, y)†.

To achieve a first approximation of Hamilton’s equations with external
terms, Santilli introduced the following parametric Lie-admissible general-
ization of Hamilton’s equation [14] [15]

dr

dt
= p

∂H(r, p)

∂p
,

dp

dt
= −q∂H(r, p)

∂r
, (6)
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with corresponding parametric Lie-admissible generalization of Heisenberg
equation for the time evolution of a Hermitean operator Q (for ~ = 1)

i
dQ

dt
= (Q,H) = pQH − qHQ. (7)

As one can see, all dynamical equations are manifestly irreversible over
time, as desired.

2.5. Lie-admissible genomathematics and genomechanics.
In September 1977, Santilli joined the Department of Mathematics of Har-
vard University under DOE support during which stay he introduced
the most general known realization of irreversible Lie-admissible algebras
(see Refs. [16] to [23]) based on the generalization and differentiation of
the ordinary product ab of arbitrary quantities (numbers, functions, oper-
ators, etc.) into the ordered genomodular product to the right

a > b = aR̂b, (8)

and that to the left
a < b = aŜb, (9)

where R̂, S and R ± S are positive-definite operators with an unrestricted
functional dependence on wavefunctions ψ(t, r) and any other needed
variables.

The operatorsR and S were called genotopic element to the right and to the
left, respectively, where the prefix “geno” was suggested by Carla Santilli
in the Greek sense of “inducing a new structure” [16].

The new genomodular products permitted the construction of new
mathematics known as genomathematics to the right and to the left, [19] with
corresponding “completion” of quantum mechanics into an irreversible
covering known as genotopic branch of hadronic mechanics or genomechanics
for short [19] in which irreversible energy releasing processes are repre-
sented with ordered genomodular product to the right, as it is the case for
the geno-Schrödinger equation or Schrödinger-Santilli genoequation [20]

H > ψ = H(r, p)R(ψ, ...)ψ = Eψ, (10)

Irreversibility is then assured whenever the genotopic elements R and S
are not invariant under time reversal.

The time evolution of a Hermitean operator Q is given by the Lie-
admissible generalization of Heisenberg equations, also known as Heisenberg-
Santilli genoequations (see, e.g., Ref. [107]) first introduced in Eqs. (4.15.34),
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page 746 of Ref. [17] (see the 2006 general treatment [24] and the 2016
update [25]) which can be written in the infinitesimal form

idQ
dt

= (Q.H) = Q < H −H > Q =

= QSH −HRQ,
(11)

and the finite form
Q(t) = eHRtiQ(0)e−itSH . (12)

The representation of Lagrange’s and Hamilton’s external terms is pro-
vided by the difference R− S at both classical and operator levels [24].

2.6. Universality of Lie-admissible formulations.
The following simple realization of the genotopic elements

S = 1, R = 1− 1
H
K(ψ, ∂ψ, ...),

idQ
dt

= (Q.H) = [Q,H] +QK,
(13)

where K is a positive-definite operator representing non-Hamiltonian in-
teractions illustrates that the Lie-admissible generalization (11) of Heisen-
berg’s equations constitute an operator image of Hamilton’s equations
with external terms (3) [56].

The double infinity of possible realizations of the genotopic elements
R and S then allows Lie-admissible equations (11) to be “directly univer-
sal” for the representation of all possible (regular) non-linear, non-local
and non-Hamiltonian interactions in the sense of representing all of them
(“universality”) directly in the frame of the experimentalism without the
use of the transformation theory (“direct universality”) (for details, see
Ref. [24]).

It should be finally indicated that the original 1978 proposal [16] es-
tablished the universality of Lie-admissible algebras because the product
(A,B) = A < B − B > A admit as particular case the product of all
possible “algebras” as commonly understood in mathematics, including
Associative, Lie, Jordan, Lie-isotopic, Jordan-isotopic, alternative, super-
associative, super-Lie, super-Jordan, nilpotent, flexible and other possible
algebras.

2.7. Prediction of new clean nuclear fusions.
Scientific and industrial applications to search for new clean energies were
initiated in the late 1990’s only following the achievement of maturity in
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the mathematical and physical methods needed for the representation of
irreversible processes.

The first application was the conception of the new Intermediate Con-
trolled Nuclear Fusion (ICNF) of light, natural and stable elements into light,
natural and stable elements with smaller mass which occur without the
emission of harmful (e.g., neutron) radiations and without the release of
radioactive waste (see Ref. [26] to [32] for originating papers and Refs.
[33] to [40] for independent studies). Laboratory analyses [41] to [52] con-
firmed the existence oof ICNF at the particle levels, with the understanding
that the related industrial production of new clean energy require addi-
tional extensive research.

2.8. Prediction of a new clean combustion of fossil fuels.
To illustrate the implications of the lack of “completion” of quantum me-
chanics for energy releasing processes, we should note that the current
combustion of fossil fuels is essentially that at the dawn of our civiliza-
tion, because we essentially strike a spark and ignite the fuel with known
alarming environmental deterioration of our planet.

The achievement of the Lie-admissible representation of energy releas-
ing processes has permitted the first known conception and initiation of
tests for a new principle of combustion called HyperCombustion which is
based on the conventional combustion of carbon and oxygen dating back
to the dawn of our civilization, plus the novel synthesis of a limited num-
ber of nuclei C-12 and O-16 into Si-28 to achieve full combustion of fossil
fuels as well as a significant increase of energy output [53].

2.9. Literature on hadronic mathematics and mechanics.
Due to the prediction of new clean nuclear energies, the connection be-
tween irreversible mechanics and thermodynamics and other features, the
literature on the foundations of hadronic mechanics is rather vast.

Ref. [54] provides a summary of the formalism of hadronic mechanics.
Refs. [55] to [61] provide general presentations of hadronic mechanics.
Vol. I of Refs. [61] contains a comprehensive literature up to 2008 with an
upgrade to 2016 in Ref. [25].

Additional references are available in the reprint volumes [62] [63] and
in the proceedings of five Workshops on Lie-Admissible Algebras,, twenty
five Workshops on Hadronic Mechanics, and three international conferences
on the Lie-admissible treatment of Irreversible Processes whose references are
available from Ref. [61]. Representative independent papers are available
from Refs. [64] to [74] and independent monographs are available from
Refs. [75] to [83].
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3. LIE-ISOTOPIC “COMPLETION” OF 20TH CENTURY AP-
PLED MATHEMATICS.
3.1. Foreword.
As it is well known, the objections against the EPR argument (Section 1.1)
were formulated for isolated reversible systems of point particles in vacuum
with linear, local and Hamiltonian interactions called reversible exterior dynam-
ical problems.

Hence, the proof of the EPR argument had to study isolated reversible
systems of extended, therefore deformable and hyperdense particles in conditions
of mutual penetration/entanglement with ensuing linear and non-linear, local and
non-local and Hamiltonian as well as non-Hamiltonian internal interactions. The
latter systems are called reversible interior dynamical problems, and they oc-
cur in the structure of hadrons, nuclei, stars and black holes.

Despite their reversible character, the latter systems could not be stud-
ied with 20th century applied mathematics, including Lie’s theory, due to
its strictly Hamiltonian character. Reversible interior dynamical systems
could not be studied with Lie-admissible formulations due to their irre-
versible character. Hence, the needed new mathematics had to be built.

In this section, we review the foundations of the new mathematics
for the consistent representation of reversible interior dynamical systems
which was essentially constructed as a reversible particular case of univer-
sal Lie-admissible formulations.

3.2. Isoproduct.
In order to achieve a representation of the latter systems, Santilli intro-
duced in the original proposal [16] of 1978 the axiom-preserving particu-
lar case of genomathematics called isomathematics, which is characterized
by the genoproduct to the right being equal to that to the left, R = S = T̂ ,
resulting in the time-reversal invariant isoproduct, (first introduced in clas-
sical realization in Eqs. (3.7.10), page 352 of Ref. [16], introduced in opera-
tor form in Eq. (4.15.46), page 751, Ref. [17] and then studied in details in
Ref. [19], Eq. (2), page 71 on)

a ? b = a T̂ b, (14)

where T̂ , called the isotopic element, is a function, matrix or operator solely
restricted to be positive-definite, but possesses otherwise an unrestricted
functional dependence on all needed local variables, such as: spacetime
coordinates x = (t, r); linear momentum p; energy E; frequency ν; den-
sity of the medium α; temperature τ ; pressure π; wavefunctions ψ; their
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derivatives ∂ψ; and any other needed variable

T̂ = T̂ (x, p, E, ν, α, τ, π, ψ, ∂ψ, ...) > 0, (15)

where the prefix “iso” was also suggested by Carla Santilli in its Greek
meaning of preserving the axions.

The physical significant of isoproduct (14) is illustrated by nothing that
it allows “ab initio” a direct representation of extended, thus deformable and
hyperdense particles and their non-Hamiltonian interactions illustrated in Fig-
ure 3 (Section 1.4). This important task is achieved via simple realizations
of the isotopic element of the type (needed for the neutron synthesis from
the hydrogen studied in Section 2.4) [55] [56]

T̂ = Diag.(
1

n2
1

,
1

n2
2

,
1

n2
3

,
1

n2
4

)e−Γ, (16)

with subsidiary conditions

nµ = nµ(x, p, E, ν, α, τ, π, ψ, ∂ψ, ...) > 0, µ = 1, 2, 3, 4,

Γ(x, p, E, ν, α, τ, π, ψ, ∂ψ, ...) ≥ 0.
(17)

The isoproduct also allows a direct representation of nuclei as a collec-
tion of extended nucleons in conditions of mutual penetration/entanglement
as presented in Figure 7 and Section 1.5 with broader realizations of the
type (needed to represent nuclear magnetic moments and spins, or for
the achievement of an attractive force between identical valence electron
bonds in molecular structures) [57]

T̂ = Πk=1,...,NDiag.(
1
n2
1k
, 1
n2
2k
, 1
n2
3k
, 1
n2
4k

)e−Γ,

k = 1, 2, ..., N, µ = 1, 2, 3, 4.

(18)

In the above realizations of the isotopic element, n2
1, n

2
2, n

2
3, (called char-

acteristic quantities) represent the deformable semi-axes of the particle nor-
malized to the values n2

1 = n2
2,= n2

3 = 1, for the sphere; n2
4 represents

the density of the particle considered normalized to the value n4 = 1 for
the vacuum; and Γ represents non-linear, non-local and non-Hamiltonian
interactions caused by mutual penetrations/entanglement of particles.

The mathematical significance of basic assumption (14) is that it requires,
for consistency, a compatible “completion” of all aspects of 20th century
applied mathematics without any known exception.
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This program was initiated in the 1978 proposal [16], continued in the
1981 monograph [19] and completed in numerous works by various math-
ematicians (see the 1995 monograph [55] for a comprehensive presenta-
tion).

Regrettably we cannot provide a technical review of isomathematics
to prevent excessive length. Nevertheless, a rudimentary outline of the
main aspects of isomathematics appears to be recommendable for an un-
derstanding of proof [7] of the EPR argument.

3.3. Isonumbers.
As it is well known, physical theories are formulated over a field F (n,×, 1)
of real, complex or quaternionic numbers n with product nm = n×m and
multiplicative unit 1. Said field remains invariant under the unitary time
evolution of quantum mechanics, thus allowing the prediction of the same
numerical values under the same conditions at different times.

But the time evolutions of hadronic mechanics, such as Eqs. (11), are
non-unitary when formulated on conventional space over a conventional
field (not so for isomathematics as shown below).

This implies the loss over time of the multiplicative unit 1, and conse-
quently, of the entire numeric field, with ensuing lack of consistent exper-
imental verifications.

To resolve this impasse, Santilli had no other choice than that of rein-
specting the historical classification of numbers, by discovering in this way
that the abstract axioms of a numeric field do not necessarily restrict the multi-
plicative unit to be the number 1, and allow for unit an arbitrary positive-definite
quantity Î provided that the multiplication is redefined for Î to verify the unit
axiom [107].

This lead to “completion” of numeric fieldsF (n,×, 1 into isofields F̂ (n̂, ?, Î

of isoreal, isocomplex, and isoquaternionic isonumbers n̂ = nÎ with isounit

Î = 1/T̂ > 0, (19)

isoproduct (14), n̂ ? m̂ = (nm)Î , and isounit isoaxiom

Î ? n̂ = n̂ ? Î = n̂, ∀n̂ ∈ F̂ . (20)

Isofields are completed by compatible redefinitions of all numeric op-
erations, such as isoquotient, isosquare, isosquareroot, etc. [107].

It should be indicated that isofields verify all axioms of a field. Hence,
isonumbers are fully acceptable for experimental verifications [57].

Isofields are classified into those of the first kind (second kind) depending
on whether the isounit Î is (is not) an element of the original field.
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In this paper, we shall solely consider isofields of the second kind since
the representation of extended particles and their non-Hamiltonian inter-
actions is achieved via the isounit or equivalently, the isotopic element.

Paper [107] has stimulated various studies in number theory, among
which we mention the study by C-Xu. Jiang [79], A. K. Aringazin [108], C.
Corda [109] and others.

3.4. Isofunctions.
As it is well known, a necessary condition for a variable to be measurable
is that it is an element of the base field, and the same holds for functions
of said variable.

The implementation of the same rule under isotopic “completion” stim-
ulated the construction of the isofunctional isoanalysis initiated by: J. V.
Kadeisvili [110][111]; A. K. Aringazin, D. A. Kirukhin and R. M. Santilli
[112]; Raul M. Falcon Ganfornina and Juan Nunez Valdes [80]; and others.

We here limit ourselves to indicate: the isotime t̂ = tÎt, isospace isocoor-
dinates r̂ = rÎr, and the isofunctions of isovariable,

f̂(r̂) = [f(rÎ)]Î , (21)

such as the isoexponentiation

êX̂ = [eX̂T̂ ]Î = Î[eT̂ X̂ ]. (22)

Similar expressions hold for virtually all conventional functions used
in applications [55].

3.5. Isospaces.
The initial construction of isomathematics [19] was formulated via con-
ventional vector or metric spaces over conventional fields.

The consistent need to formulate spaces over isofields triggered the
isotopic “completion” of metric spaces into isospaces whose study was ini-
tiated by the mathematician Gr. Tsagas and his school [113]. In turn, these
studies triggered the construction of the isotopology by R. M. Falcon Gan-
fornina and J. Nunez Valdes [114], yielding the first known topology for
the characterization of extended particles, known as the Tsagas, Sourlas,
Santilli, Ganfornina and Nunez (TSSGN) isotopology.

Let E(r, δ, I) be the conventional Euclidean space with space coordi-
nates r = (x, y, z), metric δ = Diag.(1, 1, 1), unit I = Diag(1, 1, 1) and
invariant

r2 = (x2 + y2 + z2)1, (23)
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where one should note the trivial multiplication by 1 for compatibility
with the isotopic image studied below.

The representation isospace of the non-relativistic proof of the EPR ar-
gument is given by the infinite family of iso-Euclidean isospaces, Ê(r̂, ∆̂, Î)r,
first formulated in the 1978 Ref. [16] and treated in detail in Ref. [19] , fi-
nalized in 1996 Ref. [115] and extensively treated in monograph [55].

For the simple realization of the isotopic element

T̂ = Diag.(1/n2
1, 1/n

2
2, 1/n

2
3), (24)

iso-Euclidean isospaces Ê(r̂, ∆̂, Îr) are characterized by: the isocoordinates
r̂ = rÎ , the iso-Euclidean isometric ∆̂ = (T̂ δÎ , and the isospace isounit Îr =
1/T̂ > 0 resulting in the iso-Euclidean isoinvariant

r̂2̂ = (r̂j ? ∆̂jm ? r̂
m) = (rj δ̂jmr

m)Îr =

= (
r21
n2
1

+
r22
n2
2

+
r23
n2
3
)Îr,

(25)

where we should recall that, for consistency, all scalar quantities have to
be elements of an isofield F̂ .

The above conditions require that: squares must be isosquares r̂2̂ =

r̂ ? r̂ = r̂2Îr; coordinates have to be isocoordinates r̂ = rÎr; to be iso-
matrices, isometrics must have the structure ∆̂ = δ̂Îr; and the elaboration
requires the use of the isotrigonometric isofunctions as well as of the isospher-
ical isocoordinates (see Ref. [55] for details).

Let M(x, η, I) be the conventional Minkowski space with spacetime
coordinates x = (x1, x2, x3, x4 = ct), metric η = Diag.(1, 1, 1,−1), unit
I = Diag(1, 1, 1, 1) and invariant

x2 = (xµηµνx
ν)I =

= (x2
1 + x2

2 + x3
3 − c2t2)I.

(26)

The isospace for relativistic treatments of extended particles is given
by the infinite family of iso-Minkowski spaces M̂(x̂, Ω̂, Îx) also known as
Minkowski-Santilli isospaces, (see e.g., Ref. [107]) first introduced in Ref.
[116] and then treated in details in Ref. [56].

Iso-Minkowskian isospaces are characterized by the isospace-time iso-
coordinates x̂ = xÎ ; isounit Î = 1/T̂ , and isometric Ω̂ = η̂Îx = (T̂ η)Îx formu-
lated on the isoreal isonumbers R̂.

For the simple realization of the isotopic element

T̂ = Diag(1/n2
1, 1/n

2
2, 1/n

2
3, 1/n

2
4), (27)
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Figure 12: This picture illustrates the isodifferential calculus [115] via birds flying in
close formation without wing interferences, which can be best understood by assuming
that birds conceive themselves as a volume encompassing their wings, rather than a mass
concentrated in their center of gravity as it would be requested by the Newton-Leibnitz
differential calculus.

we have the infinite family of realizations of the isospace-time isoinvariant

x̂2̂ = x̂µ ? Ω̂µν ? x̂
ν = (xµη̂µνx

ν)Î =

= (
x21
n2
1

+
x22
n2
2

+
x23
n2
3
− t2 c2

n2
4
)Î ,

(28)

where the final multiplication by the isounit is again necessary for the in-
variant to be an isoscalar.

It should be noted that, in addition to the use of the isospherical isoco-
ordinates, data elaborations in the iso-Minkowskian isospace requires the
use of isohyperbolic isofunctions (see Ref. [56], Chapters 5 and 6).

Note also that invariant (30) is the most general possible symmetric
(non-singular) invariant in (3 + 1)-dimensions, thus including as particu-
lar cases all possible Minkowskian, Riemannian, Fynslerian and all other
geometries.

3.6. Isodifferential isocalculus.
Despite the above advances, numerical predictions of isomathematics lacked
the crucial property of invariance over time.

In addition, isomechanics and hadronic mechanics at large, were in-
complete due to the inability to formulate the isotopies and genotopies of
the linear and angular momenta (see next section).
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In order to resolve this impasses, Santilli had no other choice than that
of reinspecting the Newton-Leibnitz differential calculus, by discovering
in this way that, contrary to rather popular belief for four centuries, the
differential calculus depends on the multiplicative unit of the base field because,
when the unit depends on the variable of differentiation, said calculus has
to be “completed” into the infinite family of isodifferentials, e.g., of the iso-
coordinates r̂, first formulated in memoir [115] submitted in 1995 and pub-
lished in 1996 and then treated in details in Refs. [55] [56]

d̂r̂ = T̂ d[rÎ(r, ...)] = dr + rT̂ dÎ(r, ...), (29)

with corresponding isoderivative [114]

∂̂f̂(r̂)

∂̂r̂
= Î

∂f̂(r̂)

∂r̂
. (30)

Following decades of searches, the discovery of the isodifferential iso-
calculus finally permitted the achievement of the invariance over time of
numerical predictions, the formulation of isolinear and genolinear mo-
menta and signaled the achievement of maturity for applications and ex-
perimental verifications (see Refs. [56] [57] for details).

All novel applications of isomathematics in physics, chemistry and
other fields, including the proof of the EPR argument [7], originate from
the extra term rT̂ dÎ(r, ...) in isodifferential (29), which is absent in the
mathematics for point particles.

The covering character of the isodifferential isocalculus over the con-
ventional calculus is illustrated by the fact that whenever the isounit is
independent from the differentiation variable or it is a constant, the con-
ventional calculus is recovered uniquely and identically.

It should be indicated that the biggest difficulty in the use of the isodif-
ferential isocalculus is of conceptual, rather than of mathematical character,
because it requires the transition from the visualization of the calculus at
individual points to volumes (or surfaces) represented by the isotopic ele-
ment T̂ (Figure 12).

By looking in retrospect, it appears nowadays evident that a “comple-
tion” of quantum mechanics for the representation of extended particles is
fundamentally inconsistent when formulated via the conventional differ-
ential calculus, because of its sole possible characterization of particles as
being point-like.

Consequently, the generalization of the differential calculus into a form
defined on volumes represented by T̂ , rather than defined on coordinate
points r, is essential for a consistent representation of extended particles.
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Nineteen years following the discovery of the isodifferential isocalcu-
lus for extended particles, comprehensive studies in the field have been
conducted by the mathematician S. Georgiev in the series of six mono-
graphs [83] which consider the broadest possible formulation of the isod-
ifferential calculus, including the case of different isotopic elements for
different isovariables.

3.7. Lie-Santilli isotheory.
In Santilli’s view, the physically most important part of isomathematics
is given by the isotopic “completion” of the various branches of Lie’s the-
ory, today known as the Lie-Santilli isotheory, which was first formulated in
papers [16] [17] of 1978, systematically studied in monograph [19], final-
ized in Refs. [55] [56] of 1995 following the discovery of the isodifferential
calculus [115] and recently studied in paper [117].

In this section, we follow the presentation of Ref. [19] of 1981 upgraded
into a formulation on isospaces over isofields and elaborated via the isod-
ifferential isocalculus.

LetL be a n-dimensional Lie algebra with Hermitean generatorsXk, k =
1, 2, ...n defined on a conventional space over a conventional numeric field.
Then, the infinite family of isotopies L̂ ofL are characterized by the follow-
ing main theorems:

THEOREM 3.7.1 [19]: (Poincaré-Birkhoff-Witt-Santilli isotheorem): The iso-
cosets of the isounit and of the isostandard isomonomials

Î , X̂k, X̂i ? X̂j, i ≤ j, X̂i ? X̂j ? X̂k, i ≤ j ≤ k, . . . , (31)

form an infinite dimensional isobasis of the universal enveloping isoassociative
isoalgebra Ê(L̂) (also called isoenvelope for short) of a Lie-Santilli isoalgebra
L̂.

The first illustration of the above theorem is given by isoexponential
isofunction (22) whose correct derivation requires infinite basis (31).

The appearance of the non-linear, non-local and non-potential isotopic
element T̂ in the exponent illustrates the non-trivial character of the Lie-
Santilli isotheory.

THEOREM 3.7.2 [19]: (Lie-Santilli isoalgebras) The antisymmetric isoalgebras
L̂ attached to the isoenveloping algebras Ê(L̂) verify the isocommutation rules

[X̂î,X̂j] = X̂i ? X̂j − X̂j ? X̂i =

= Ĉk
ij(t, r, p, E, µ, τ, ψ, ∂ψ, ...) ? X̂k,

(32)
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where the quantities Ĉ are called the structure quantities.

The above isocommutation rules show the axiom-preserving charac-
ter of the isotopies in view of their evident verification of the Lie axioms,
although via a broader realization.

The Lie-Santilli isotheory is called regular or irregular depending on
whether the structure quantities Ĉk

i,j are isoscalars or isofunctions, respec-
tively.

This classification is important because as shown in the next section,
the regular Lie-Santilli isotheory can be constructed via a well defined
transform of corresponding Lie theory, while irregular Lie-Santilli isothe-
ories are truly new theories verifying Lie’s axioms without a known map
form the conventional formulation.

THEOREM 3.7.3 [19]: (Lie-Santilli isogroups) The isoexponentiated form Ĝ of
isocommutation rules (32) defined on an isospace Ŝ with local isocoordinates x̂
over an isofield F̂ with isounit Î = 1/T̂ > 0 is a group mapping each element
x̂ ∈ Ŝ into a new element x̂′ ∈ Ŝ via the isotransformations

x̂′ = ĝ(ŵ) ? x̂, x̂, x̂′ ∈ Ŝ, ŵ ∈ F̂ , (33)

verifying the following isomodular isoaction to the right:
1) The isomap of ĝ ? Ŝ into Ŝ is isodifferentiable ∀ĝ ∈ Ĝ;
2) Î is the left and right isounit of Ĝ,

Î ? ĝ = ĝ ? Î ≡ ĝ, ∀ĝ ∈ Ĝ; (34)

3) The isomodular isoaction is isoassociative,

ĝ1 ? (ĝ2 ? x̂) = (ĝ1 ? ĝ2) ? x̂, ∀ĝ1, ĝ2 ∈ Ĝ; (35)

4) In correspondence with every element ĝ(ŵ) ∈ Ĝ with ŵ ∈ F̂ there exists
the inverse element ĝ(−ŵ) such that

ĝ(0̂) = ĝ(ŵ) ? ĝ(−ŵ) = Î; (36)

5) The following composition laws are verified

ĝ(ŵ) ? ĝ(ŵ′) = ĝ(ŵ′) ? ĝ(ŵ) = ĝ(ŵ + ŵ′),∀ĝ ∈ Ĝ, ŵ ∈ F̂ ; (37)

with corresponding isomodular action to the left, and general expression

ĝ(ŵ) =
∏
k

êî?ŵk?X̂k ? ĝ(0) ?
∏
k

ê−î?ŵk?X̂k . (38)
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Nowadays, isomathematics is referred to as the infinite family of iso-
topies of 20th century applied mathematics, with particular reference to
the isotopies of Lie’s theory when formulated on isospaces over isofields
and elaborated via the isodifferential isocalculus. Isomathematics is then
classified into regular and irregular isomathematics depending on whether
the structure quantities Ĉij are isoscalars or isofunctions of local isovari-
ables, respectively.

It should be indicated that, the proof [7] of the EPR argument uses both
regular and irregular Lie-Santilli isoalgebras.

Since Lie’s theory is at the foundation of the axiomatic structure and
applications of quantum mechanics, the covering Lie-Santilli isotheory
predictably stimulated a number of independent contributions, such as
the studies by the mathematicians: D. S. Sourlas and Gr. T. Tsagas [76], J.
V. Kadeisvili [118], T. Vougiouklis [119] and papers quoted therein.

3.8. Simple construction of regular isomathematics.
A simple method for physicists has been identified in Ref. [120] of 1997
for the construction of regular isomathematics. The method consists of:
1) Selecting the desired representation of extended particles with non-
Hamiltonian interactions via isotopic elements T̂ of type (16) or (18); 2)
Identifying a non-unitary transformation representing the selected isounit
Î = 1T̂

UU † = Î; (39)

3) Subjecting the totality of conventional applied mathematics to the above
nonunitary transform with no known exception, resulting in expressions
of the type

I → Î = UIU † = 1/T̂ , (40)

n→ n̂ = UnU † = nUU † = nÎ, n ∈ F, (41)

f(r)→ f̂(r̂) = Uf(r)U †, (42)

eA → UeAU † = ÎeT̂ Â = (eÂT̂ )Î , (43)

AB → U(AB)U † =

= (UAU †)(UU †)−1(UBU †) = Â ? B̂.

(44)

It should be indicated that the above transformations imply the possi-
bility of constructing the infinite family of Lie-Santilli isoalgebras via non-
unitary transforms of the considered Lie algebra. This is possible in view
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of the transformation of commutation rules into their covering isocommu-
tator forms,

[A,B]→ U [A,B]U † = [Â,̂B̂]. (45)

This property is evidently important for the construction of the isorep-
resentation of regular isoalgebras used for physical and chemical applica-
tions.

Note that serious inconsistencies occur, at times without their detection by
non-experts, in the event only one single quantity or operation of 20th century
applied mathematics is not subjected to the above non-unitary map.

We should finally indicate that the proof of the EPR argument used in Ref.
[7] is of ’non-unitary’ character, thus implying that the physical conditions
for said proof are outside the class of equivalence of quantum mechanics.

3.9. Invariance of regular isomathematics.
An additional contribution of paper [120] is the proof that the dimension,
shape and density of extended particles and their non-Hamiltonian interactions
are represented by isomathematics in a form invariant over time.

Firstly, Ref. [120] showed that, following the construction of regular
isomathematics via non-unitary transformations (Section 2.2.8), isomath-
ematics is not invariant under additional non-unitary transforms, e.g., be-
cause of the lack of invariance of the basic isounit

Î → Î ′ = WÎW † 6= Î , WW † 6= I, (46)

with consequential physical inconsistencies since any structural change of
the isounit implies the transition to a different physical or chemical sys-
tem.

However, non-unitary transforms can always be identically rewritten
as isounitary isotransforms according to the rule [56]

WW † = Î , W = Ŵ T̂ 1/2, (47)

WW † = Ŵ ? Ŵ † = Ŵ † ? Ŵ = Î , (48)

under which reformulation we have the following invariance of the isounit
of the isotopic element and of the isoproduct of regular isomathematics [120]

Î → Î ′ = Ŵ ? Î ? Ŵ † ≡ Î , (49)

Â ? B̂ → Ŵ ? (Â ? B̂) ? Ŵ † =

= Â′ ? B̂′ = Â′T̂ B̂′,

Â′ = Ŵ ? A ? Ŵ †). B̂′ = Ŵ ? B̂ ? Ŵ †, T̂ = (W † ? Ŵ )−1.

(50)
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The invariance of the entire isomathematics follows. Note that the in-
variance is ensured by the invariant numeric values of the isounit and therefore,
of the isotopic element under isounitary isotransforms,

Î → Î ′ ≡ Î , (51)

A ? B = AT̂B → A′ ?′ B′ = A′T̂ ′B′

= Â′ ? B̂′ = Â′T̂ B̂′
(52)

T̂ → T̂ ′ ≡ T̂ . (53)

By noting that, as shown in the next section, the time evolution of the
isotopic “completion” of quantum mechanics is an isounitary isotrans-
form, paper [120] established that isomechanics is an axiom-preserving ”com-
pletion” of quantum mechanics capable of representing extended particles under
Hamiltonian as well as non-Hamiltonian interactions in a form invariant over
time.

In closing, we should recall other generalizations of 20th century math-
ematics and their applications, such as the so-called deformations. These
generalizations are mathematically correct, but physically inconsistent be-
cause they violate causality laws (for brevity, see the Theorems of Inconsis-
tency of Non- Unitary Theories in Vol. I of Refs. [61]). These inconsistencies
arise from a structural generalization of Lie’s algebras and other quantum
laws when formulated on conventional spaces over conventional fields,
thus preventing their reformulation as isounitary theories.

Note that the invariance of isomathematics reviewed in this section im-
plies the verification of causality on isospaces over isofields in the same
way as quantum mechanics verify causality laws.

4. LIE-ISOTOPIC “COMPLETION” OF QUANTUM MECHAN-
ICS.
4.1. Foreword.
In this section, we review the foundation of the isotopic branch of hadronic
mechanics, also known as isomechanics, which is used in the proof of the
EPR argument [7].

An important difference between preceding works and the presenta-
tion in this section is that the previous works generally present isome-
chanics in its projection on conventional spaces over conventional fields.

By contrast, in this section we put the emphasis in the full formulation
of isomechanics, that on isospaces over isofields because important to il-
lustrate that, contrary to opposing view (Section 1.1), proof [7] of the EPR
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argument is fully compatible with quantum axioms, only subjected to a
broader realization.

Isomechanics was first introduced via isoproducts defined on conven-
tional spaces over conventional fields in the 1978 papers [16] [17] and in
the 1981 monograph [19]; it first achieved mathematical maturity in the
1996 memoir [115] thanks to the discovery of the isodifferential isocal-
culus; isomechanics was finally presented in a systematic way in mono-
graphs [55] [56] [57] with a 2016 upgrade in Section 2 of memoir [25].

Independent studies are available in Refs. [75] to [83]. A comprehen-
sive list of references up to 2008 is available in Vol. I of Refs. [61] while a
2016 upgrade is available in Ref. [25]. We regret the inability of reviewing
all important contributions on isomechanics to prevent an excessive length
and are forced to outline only the most salient structural contributions.

4.2. Iso-Newton isoequations.
As it is well known, the fundamental equations of mechanics are the his-
torical Newton’s equations, representing systems of point-particles with Ha-
miltonian (that is, variationally selfadjoint, SA [18]) and non-Hamiltonian
(variationally non selfadjoint, NSA [18]) forces [18] defined on a conven-
tional Euclidean space, E(r, δ, I) over the field of real numbersR

mdvak
dt
− F SA

ak (r, v)− FNSA
ak (t, r, v) = 0,

k = 1, 2, 3, a = 1, 2, ..., N, N ≥ 2.
(54)

It is generally believed that Newton’s equations with non-conservative
forces can solely represent open, irreversible systems. In Ref. [19] Section
6.3, Page 236, Santilli introduced closed non-self-adjoint systems, which are
given by systems (54) violating the integrability conditions for their rep-
resentation via Lagrange’s or Hamilton’s equations, yet verifying all ten
conservation laws of Galileo relativity under the conditions∑

akF
NSA
ak = 0,∑

akr · FNSA = 0,∑
akrF

NSA = 0.

(55)

which conditions are evidently applicable only for N ≥ 2, since the case of
one particle N = 1 is trivial.

The fundamental equations of isomechanics are given by the isotopic
“completion” of Eqs. (54) known as iso-Newton isoequations, which were
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first introduced in Ref. [115] immediately following the discovery of the
isodifferential isocalculus, and they are also known as Newton-Santilli isoe-
quations, (see, e.g., Refs. [107] [75] [81]) defined on iso-Euclidean isospaces
Ê(r̂, δ̂, Î) (Section 2.2.5) over isoreal isonumbers R̂ (Section 2.2.3)

m̂a ?
d̂v̂ak

d̂t̂
− F SA

ak (r̂, v̂) = 0. (56)

A first important feature of Eqs. (56) is that of providing the first known
consistent representation of the actual shapes and dimensions of the parti-
cles considered via the isodifferential calculus, with realization of the iso-
topic element of type (16).

A second important feature of Eqs. (56) is that of representing all
potential-(SA) forces via conventional Newtonian forces F SA(r, v) while
representing all non-potential-(NSA) forces via the isodifferential calcu-
lus.

This feature is treated in details in Ref. [115] and can be summarized
as follows.

Note that the basic isounit of Eqs. (56) is the isovelocity isounit, Î = Îv.
Assume for simplicity that the isotime is equal to the conventional time,

t̂ = t Ît = 1. (57)

Consequently, from isoderivative (30), we have

d̂v̂

d̂t̂
= Itdv̂/dt̂ = dv̂/dt. (58)

Consider then the projection of Eqs. (56) in the Euclidean space E(v, δ, I)
and use the various rules of isomathematics (Section 2.2). Then Eqs. (56)
can be written in the projected form (where all multiplications are conven-
tional),

(mÎ)T̂ d̂(vÎ)
dt
− F SAÎ =

= Î[mdv
dt
− F SA] +mvT̂ dÎ

dt
= 0.

(59)

By dividing the above equation with Î > o, one obtains Newton’s equa-
tions with the following realizations of the NSA forces

FNSA(t, r, v) = mvT̂
dÎ

dt
. (60)
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In conclusion, the iso-Newton isoequations (56) embed all NSA forces into
the isoderivatives by therefore allowing the first known consistent operator image
of non-Hamiltonian forces studied in subsequent sections.

4.3. Iso-Lagrangian and iso-Hamiltonian isomechanics.
Iso-Newton isoequations (56) admit a representation in terms of the iso-
Lagrange isoequations first formulated in memoir [115] via the isodifferen-
tial calculus, thus being defined on an iso-Euclidean isospace over the iso-
real isofield

d̂

d̂t̂

∂̂L̂(r̂, v̂)

∂̂v̂ak
− ∂̂L̂(r̂, v̂)

∂̂r̂ak
= 0, (61)

where L̂ = LÎ is an iso-Lagrangian, namely, a conventional Lagrangian
formulated on isospaces over isofields thus being multiplied by the isounit
to be an isoscalar.

Eqs. (56) also admit the isocanonically isoequivalent isorepresentation
in terms of the iso-Hamilton equations first formulated in memoir [115] on
an isophase isospaces over an isoreal isofield and also known as Hamilton-
Santilli isoequations (see, e.g., Ref. [107])

d̂r̂ak
d̂t̂

= ∂̂Ĥ(r̂,p̂)

∂̂p̂ak
,

d̂p̂ak
d̂t̂

= − ∂̂Ĥ(r̂,p̂)

∂̂r̂ak
,

(62)

where Ĥ = HÎ is the iso-Hamiltonian, that is, a conventional Hamiltonian
formulated on an isophase isospace over an isofield.

Note that iso-Hamiltonian isomechanics admits the following time evo-
lution for a quantity Q̂

d̂Q̂

d̂t̂
= [Q̂,̂Ĥ] =

∂̂Â

∂̂r̂ak

∂̂Ĥ

∂̂p̂ak
− ∂̂Ĥ

∂̂p̂ak

∂̂Q̂

∂̂r̂ak
, (63)

where the brackets [Q̂,̂Ĥ] constitute a classical realization of Lie-Santilli
isoalgebras.

4.4. Isovariational isoprinciple.
Another important feature of Eqs. (56) is that of permitting the first known
representation of variationally non- selfadjoint/non-Hamiltonian systems
via an isovariational isoprinciple [115],

δ̂Â = δ̂

∫̂
(p̂ak ? d̂r̂ak − Ĥ ? d̂t̂) = 0, (64)
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which representation is notoriously impossible for NSA Newton’s equa-
tions, with the consequential lack of achievement of consistent operator
forms of nonconservative forces.

In view of the universality of Eqs. (56), the above isovariational iso-
principle is directly universal, that is, capable of representing all infinitely
possible, regular, time reversal invariant Newtonian systems (54) (“uni-
versality”) directly in the coordinates of the experimenter (“direct univer-
sality”).

4.5. Iso-Hamilton-Jacobi isoequations.
Much along conventional analytic procedures, it is easy to prove that iso-
variational isoprinciple (64) implies the following iso-Hamilton-Jacobi isoe-
quations also called Hamilton-Jacobi-Santilli isoequations [115] [25] that are
at the foundation of the isoquantization reviewed in the next section

∂̂Â

∂̂t̂
+ Ĥ = 0, (65)

∂̂Â

∂̂r̂ak
− p̂ak = 0, (66)

∂̂Â

∂̂p̂ak
= 0. (67)

We should recall from Section 2.2.5 that isodynamical isoequations of
classical isomechanics require two different isofields, the first being the
isotime isofield with isounits Ît and the second being the isovelocity isofield
with isounits Îv.

However, the direct universality is already achieved with the sole use
of the isovelocity isounit. Hence, the isotime isounit can be assumed to be
1 without any loss of direct universality.

For non-relativistic formulations, we shall use isotime in the isodynam-
ical equations for completeness, with the tacit understanding that, unless
otherwise specified, isotime will be assumed to be equal to the conven-
tional time.

As it will soon be evident, the Hamilton-Jacobi-Santilli isoequations
(65)-(67) are truly fundamental for the construction of operator isomechan-
ics, as well as for the proof of the EPR argument because said equations
have permitted:

1) The achievement from Eqs. (65) of a unique and unambiguous map
of classical into operator isomechanics;
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2) The achievement from Eqs. (66) of the first known operator form of
the isolinear isomomentum;

3) The achievement, from Eqs. (67) of an operator isomechanics whose
isowave Isofunctions solely depend on local isocoordinates ψ̂(r̂). This fea-
ture is necessary for a consistent isotopic “completion” of quantum me-
chanics since conventional wave functions ψ(t, r) do not depend on lin-
ear momenta p. Hence, any “completion” of quantum mechanics whose
wavefunctions also depend on linear momenta would not be an axiom-
preserving map.

It should be noted that, by comparison, the use of the Birkhoffian me-
chanics would imply broader Hamilton-Jacobi-Santilli isoequations (see
page 205 of Ref. [19]) with ’wave functions’ depending also on isomo-
menta, ψ̂(t̂, r̂, p̂), resulting in an operator mechanics beyond our current
knowledge for quantitative treatments.

4.6. Naive isoquantization.
As it is well known, the conventional “naive quantization” of Hamilto-
nian mechanics into quantum mechanics is based on the following map
generated by the conventional Hamilton-Jacobi equations

A =
∫

(pkdx
k −Hdt)→

→ −i~logψ(t, r),
(68)

that identifies Planck’s constant ~ = 1 as the fundamental unit of the the-
ory.

The isotopic lifting of the naive quantization, called naive isoquantiza-
tion (first identified by A. E. O. Animalu and R. M. Santilli in Ref. [121]),
characterizes the following map of (classical) iso-Hamiltonian mechanics
into (operator) isomechanics via Hamilton-Jacobi-Santilli isoequation (65)
(where the sum over the indices ak is omitted for simplicity)

Â =
∫̂

(p̂ ? d̂r̂ − Ĥ ? d̂t̂) →

→ −iÎLogψ̂,
(69)

with the following fundamental identification of the isolinear isomomentum
from Eq. (66)

p̂ ? ψ = −î ? ∂̂rψ̂, (70)

and the equally fundamental, independence of the isowavefunction from
the isolinear isomomentum from Eq. (67)

∂̂p̂ψ̂ = 0, (71)
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where we use the notion of isolog ˆlogψ̂ = Î logψ (see [55]).
The above naive isoquantization identifies the central assumption of

isomechanics, namely, the map of Planck’s constant ~ into an integro-differential
operator, the isounit Î ,

~→ Î(t, r, p, E, µ, τ, ψ, ∂ψ, ...) > 0. (72)

that, from Section 2.2.8, can be achieved via a non-unitary transform of
Plank’s constant selected in such a way to represent the desired systems,
e.g., as in model (16),

~ = 1 → ~̂ = U~U † = UU † = Î . (73)

The above transform is then restricted by the subsidiary condition that
isomechanics must recover quantum mechanics at mutual distances of
particles bigger than their size d

Limr>d/2Î = 1. (74)

Therefore, the studies herein reported assume that isomechanics is solely
valid within the volume occupied by hadrons, nuclei or stars, while quan-
tum mechanics is assumed to be exactly valid everywhere else (Figure 13).

Note that the structure of the isotopic element (16) permits a smooth
transition from isomechanics to quantum mechanics.

The above condition means that, for the case of the structure of a hadron,
isomechanics is solely valid within a sphere with diameter d ≈ 1fm =
10−15 cn. For the case of the structure of the deuteron, isomechanics is
solely valid within a volume with diameter d ≈ 2.50 fm; and the same
applies for nuclei, stars and black holes.

The main objective of the “completion” of Planck’s constant ~ into the
integro-differential isounit Î is to represent the expected, generalized, en-
ergy exchanges of particles in interior dynamical conditions (as expected
for an electron in the core of a star), which exchanges cannot be the same as
those occurring when particles moves in vacuum due to the surrounding
pressures and other factors (see paper II for details).

4.7. Iso-Hilbert isospaces.
Another basic notion of isomechanics is its formulation on the iso-Hilbert
isospaces Ĥ, also called the Hilbert-Myung-Santilli isospace (HMS isospace)
because first introduced by H.C. Myung and R.M. Santilli in Ref. [122] of
1982 over a conventional field of complex numbers C and then formulated
on an isocomplex isofield Ĉ in Ref. [115].
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Figure 13: An illustration of the central assumption according to which isomechanics
is solely valid within the volume occupied by hadrons, nuclei, stars or black holes, while
quantum mechanics is valid everywhere else thanks to the rapid convergence of isotopic
elements, such as Eq. (16), to the unit value 1.

HMS isospaces are characterized by (see Ref. [55] for details): isostates
ψ̂, with isonormalization

< ψ̂| ? |ψ̂ >= Î , (75)

isoexpectation isovalues of an iso-Hermitean operator Â ,

<̂Â>̂ =< ψ̂| ? Â ? |ψ̂ >, (76)

and basic isoidentity
<̂Î>̂ = Î , (77)

where the ”hat” denotes definition on isospace over isofields.
It should be recalled from Ref. [122] that the condition of iso-Hermiticity

coincides with that of Hermiticity. Therefore, all quantities that are observ-
able in quantum mechanics remain observable in isomechanics (see monograph
[56] for details).

4.8. Iso-Schrödinger isorepresentation.
Recall that the Schrödinger representation is crucially dependent on the
realization of the linear momentum in term of the differential calculus,

pψ(t, r) = −i~∂rψ(t, r). (78)

Consequently, the “completion” of quantum mechanics mandated the
search for the “completion” of the differential calculus [115] to achieve a
consistent formulation of the linear momentum such as that of Eq. (70),
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that we rewrite in the more detailed form on the Hilbert-Myung-Santilli
isospace Ĥ over the isofield of isocomplex isonumbers ı ˆcalC (with ~ = 1)

p̂k ? |ψ̂(t̂, r̂) >= −î ? ∂̂r̂k |ψ̂(t̂, r̂) >=

= −iÎ∂r̂k |ψ̂(t̂, r̂) >,

(79)

where: r̂ = rÎ are the isocoordinates on an iso-Euclidean isospace over
an isofield, from which one can derive the iso-Schrödinger isoequation, also
called Schrödinger-Santilli isoequation [17] [115]

î ? ∂̂t̂|ψ̂(t̂, r̂) >= Ĥ ? |ψ̂(t̂, r̂) >=

= Ĥ(r, p)T̂ (t, r, p, ψ, ∂ψ, ...)|ψ̂(t̂, r̂ >) =

= Ê ? |ψ̂(t̂, r̂) >= E|ψ̂(t̂, r̂) >,

(80)

where Ê = EÎ is an isoeigenvalue defined on the isoreal isofield R̂, and E
is an ordinary eigenvalue defined on the field of real numbers.

The iso-Schrödinger isorepresentation is completed by the isocanonical
isocommutation rules, solely definable thanks to the isodifferential realiza-
tion (79) of the isolinear isomomentum [115]

[r̂î,p̂j]|ψ̂ >= î ? δ̂i.j|ψ̂ >= iδi.j|ψ̂ >, [r̂î,r̂j]|ψ̂ >= [p̂î,p̂j]|ψ̂ >= 0. (81)

Note that the characterization of extended particles at short mutual
distances requires the knowledge of two isoobservables, the conventional
Hamiltonian H for the representation of SA interactions and the isotopic
element T̂ for the representation of dimension, shape, density and NSA
interactions.

On more technical grounds, Eqs. (80) are referred to as regular iso-
Schrödinger equations to emphasize, in the sense of Theorem 3.7.2, the fact
that they can be derived from the conventional Schrödinger equation via
non-unitary transformations. The broader irregular iso-Schrödinger equa-
tion which cannot be derived via non-unitary transformations due to the
addition of strong interactions, are studied in Paper II, Section 4.3., Eqs.
(89).

4.9. Iso-Heisenberg isorepresentation.
Non-relativistic isomechanics is additionally based on the iso-Heisenberg
isoequations, also called Heisenberg-Santilli isoequations (first formulated in
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Eq. (4.15.49), page 752 of the 1978 paper [17] over conventional fields and
formulated via the full use of isomathematics in the 1996 memoir [115]),
here written for the iso infinitesimal isotime evolution of an iso-Hermitean
operator Q̂

î ? d̂Q̂

d̂t̂
= [Q̂,̂Ĥ] = Q̂ ? Ĥ − Ĥ ? Q̂ =

= Q̂T̂ (ψ, ...)Ĥ(r, p)− Ĥ(r, p)T̂ (ψ, ...)Q̂,

(82)

and then in their isoexponentiated form

Q̂(t̂) = êĤ?t̂?̂i ? Q̂(0) ? ê−î?t̂?Ĥ =

= eĤT̂ tiQ(0)e−itT̂ Ĥ ,

(83)

where we have used isoexponentiation (22).
Note the characterization of isoinfinitesimal isoequations (82) via the

Lie-Santilli isoalgebras (Theorem 3.7.2.) and the characterization of their
finite form (83) via the Lie-Santilli isogroups (Theorem 3.7.3).

Note also that the Lie-isotopic equations (82) (83) are a particular case
of the broader Lie-admissible equations (11) (12), respectively.

4.10. Iso-Klein-Gordon isoequation.
The relativistic isoequations of hadronic mechanics are characterized by
the iso-Casimir isoinvariants of the basic symmetry of the iso-Minkowski
isospace-time, the Lorentz-Poincaré-Santilli isosymmetry studied in paper II.

At this stage of our analysis, we merely consider the following isotopic
“completion” of the second order invariant of the Lorentz-Poincaré symme-
try formulated on iso-Minkowskian isospace M̂(x̂, Ω̂, Î over the isoreals R̂
(Section 2.5)

p̂2̂ = p̂µ ? p̂
µ = (M̂ ? Ĉ)2̂ = (mC)2Î , (84)

where
M̂ = mÎ, (85)

is the isomass, and

Ĉ = CÎ =
c

n4

Î , (86)

is the light isospeed from isoinvariant (26).
By using the isolinear isomomentum (79) isoinvariant (84) character-

izes the second order isoequation of isomechanics known as iso-Klein-Gordon
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isoequation [123]

p̂µ ? p̂
µ|ψ̂(x̂) >= Ω̂µν ? p̂µ ? p̂ν |ψ̂(x̂) >=

= η̂µν(−iÎ∂µ)T̂ (−iÎ∂ν)|ψ̂(x̂) >=

= −Î η̂µν∂µ∂ν |ψ̂(x̂) >= Î(mC)2|ψ̂(x̂) >,

(87)

also called Klein-Gordon-Santilli isoequation, first introduced with the isod-
ifferential isocalculus in Chapter 9 of Refs. [56] and in papers [123] [124],
(see also review [25]).

4.11. Iso-Dirac isoequation.
The first-order relativistic isoequation of hadronic mechanics is given by
the isolinearization [124] of isoinvariant (84) and it is called the iso-Dirac
isoequation, or Dirac-Santilli isoequation (see Refs. [115] [56] [123] [124])

[Ω̂µν ? Γ̂µ ? ∂̂ν + M̂ ? Ĉ]|ψ̂(x̂) >=

= (−iÎ η̂µν γ̂µ∂ν +mC)|ψ̂(x̂) >= 0,

(88)

where the Dirac-Santilli isogamma isomatrices Γ̂ = γ̂Î are given by

γ̂k = 1
nk

(
0 σ̂k
−σ̂k 0

)
,

γ̂4 = i
n4

(
I2×2 0

0 −I2×2

)
,

(89)

where σ̂k are the regular iso-Pauli isomatrices studied in Section 3.3 of paper
II, with anti-isocommutation rules

{γ̂µ̂,γ̂ν} = γ̂µT̂ γ̂ν + γ̂νT̂ γ̂µ =
= 2η̂µν .

(90)

One should note that the anti isoanticommutators of the Dirac-Santilli
isogamma isomatrices yield the isometric η̂µν of the iso-Minkowski isospace-
time (Section 2.5).

Recall that the iso-Minkowski isospace-time includes as particular cases
all possible, non-singular, symmetric space-times, thus including the Rie-
mannian space-time reformulated with isomathematics. In fact, the iso-
Minkowskian isometric ηµν admits as a particular case the Schwartzchild
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metric via the following simple realization of the isotopic element

T̂kk = 1/(1− 2M/r),

T̂44 = 1− 2M/r.

(91)

Additionally, the iso-Minkowskian isometric admits the following com-
bination of the Schwartzchild metric for exterior gravitational problems
and that for interior problems (see, Eqs. (9.5.18) page 448, Ref. [56]

T̂kk = 1/(1− 2M/r)n2
k,

T̂44 = (1− 2M/r)/n2
4.

(92)

Consequently, the Dirac-Santilli isoequation with realization (91) of the
isotopic element permits the study of an electron in an exterior gravitational
field, while realization (92) permits the study of electrons in interior gravita-
tional fields.

Relativistic isoequations are far from being mere academic curiosities
because, as we shall see in paper II, they have provided the first and only
known relativistic representation of all characteristics of the neutron in its
synthesis from a proton and an electron [124], none of which characteristics
are representable via quantum mechanics. Additional advances permitted
by relativistic isomechanics will be indicated in paper II.

More technically, Eq. (88) is referred to as regular iso-Dirac equations
to emphasize, in the sense of Theorem 3.7.2, the fact that they can be de-
rived from the conventional Dirac equation via non-unitary transforma-
tions. The broader irregular iso-Dirac equation which cannot be derived via
non-unitary transformations due to the addition of strong interactions, are
studied in Paper II, Section 4.4., Eqs. (97).

4.12. Representation of non-linear interactions.
An important insufficiency of quantum mechanics is the inability to char-
acterize individual constituents under non-linear internal forces in view
of the inapplicability of the superposition principle.

In fact, the sole possible, quantum mechanical representation of non-
linear interactions is that via the Hamiltonian

H(r, p, ψ, ...)|ψ(t, r) >= E|ψ(t, r) >, (93)

under which the total state |ψ(t, r) > does not admit a consistent decom-
position into the individual states.
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Figure 14: An illustration on the left of the divergence of the Dirac delta distribution at
its origin caused by the point-like approximation of particles, with ensuing divergencies
in quantum mechanics. An illustration on the right of the removal of said divergencies by
the Dirac-Myung-Santilli isodelta isofunction thanks to the representation of particles as
extended, with ensuing lack of divergencies in isomechanics.

It is easy to see that this insufficiency is resolved by isomechanics thanks
to the embedding of all non-linear forces in the basic invariant of the the-
ory, the isounit (or isotopic element).

In fact, the Schrödinger-Santilli isoequation (80) can be explicitly writ-
ten

Ĥ ? |ψ̂ >= Ĥ(r̂, p̂)T̂ (ψ̂, ...)|ψ̂ >= E|ψ̂ >, (94)

and its total isostate verifies the factorization

ψ̂ = Πkψ̂k, k = 1, 2, ..., N, (95)

called isosuperposition isoprinciple [56].
It is evident that factorization (94) allows the characterization of indi-

vidual constituents under non-linear internal interactions, thus permitting
new structural models of hadrons, nuclei, stars and black holes.

4.13. Isostrong isoconvergence.
In all applications to date, the basic isotopic element (16) resulted to have
a numeric value smaller than one

||T̂ || � 1. (96)

This feature has the important consequence that perturbative and other
series that are slowly convergent or divergent in quantum mechanics become
strongly convergent under their isotopic “completion” [56].

To illustrate this important feature, consider a divergent quantum me-
chanical series, such as the canonical series

A(w) = A(0) + (AH −HA)/1! + .... =→

→∞, w > 1.
(97)
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But the value of the isotopic element is much smaller than the parameter
w. Therefore, the isotopic ”completion” of the above series

A(w) = A(0) + (AT̂H −HT̂A)/1! + ....→

→ N <∞,
(98)

is strongly convergent.
Specific examples of convergence of isoperturbative isoseries much more

rapid than corresponding quantum mechanical series have been provided
in Refs. [103] [104] (see Section 1.6 for additional comments).

4.14. Removal of quantum divergencies.
As it is well known, the divergencies of quantum mechanics originate
from the singularity existing at the origin of the Dirac delta distribution (Fig-
ure 14) which divergence originates from the point-like approximation of
particles.

Another important feature of isomechanics is that of avoiding these
singularities as illustrated by the isotopic image of Dirac’s delta ”distribu-
tion”, known as Dirac-Myung-Santilli isodelta isofunction first introduced in
Ref. [122] (see also Nishioka’s studies [125] to [128])

δ̂(r̂) =

∫̂
êk̂?r̂ ? d̂k̂ =

∫
ek̂T̂ r̂dk̂, (99)

where we have used isoexponentials and isointegrals [56].
As illustrated in Figure 14, the appearance of the isotopic element in

the exponent of the integrant changes a sharp singularity at the origin r = 0
into a bell-shaped function.

In summary, the singularities of quantum mechanics are ultimately due to
the point-like abstraction of particles or equivalently, to the formulation of the
differential calculus at isolated points. Whenever particles are represented with
their actual extended size, and the differential calculus is extended to formulations
over volumes, quantum singularities no longer hold.

4.15. Isoscattering isotheory.
Another important application of isomechanics is the isotopic “comple-
tion” of the conventional, potential, scattering theory into the covering
isoscattering isotheory studied by R. Mignani [129] to [131], A. K. Aringazin
and D. A. Kirukhin [132], A. O. E. Animalu and R. M. Santilli [133] and
others (see Chapter 12 of Ref. [56]).
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Figure 15: The left view illustrates the scattering of point-particles, with ensuing re-
alization of interactions via point-particle exchanges, that have been experimentally es-
tablished for electromagnetic interactions. The right view illustrates the scattering of
extended hadrons at high energy implying the presence of contact, non-linear, non-local
and non-potential interactions in the scattering region. These conditions imply the impos-
sibility of conventional particle exchanges evidently because of the extremely big density
of the scattering regions that may approach the density of black holes, thus requiring
broader scattering theories.

Regrettably, we cannot review these studies to avoid a prohibitive leng-
th. We limit ourselves to recall that the potential scattering theory was
originally conceived by Feynman and others for the electromagnetic inter-
actions of point-like particles in vacuum.

Its dominant notion is the characterization of interactions via the ex-
change of point-like particles.

The historical experimental verifications of the potential scattering the-
ory under the indicated conditions triggered its use for the scattering of
extended hadrons all the way to their recent very high energies.

The studies herein reported on the covering isoscattering isotheory
have indicated that the consistent representation of hadrons as extended,
therefore deformable and hyperdense, implies necessary revisions of hadron
physics beginning with a “completion” of its mathematical foundations,
then passing to the “completion” of quantum laws. These advances then
require, for consistency, the “completion” of the potential scattering theory
into a covering theory in which the hyperdense character of the scattering
region implies the presence of non-linear, non-local and non-potential ef-
fects preventing any consistent representation of interactions via the sole
exchanges of extended hadrons in favor of covering vistas (Figure 15).

It should be stressed that the isoscattering isotheory has a Lie-Santilli
algebraic structure, thus being solely applicable to time reversal invariant
collisions generally given by elastic scattering. The study of inelastic scat-
tering of extended hadrons at high energy requires the broader genoscatter-
ing genotheory with the covering Lie-admissible algebraic structure, which
broader theory cannot be considered here for brevity (see Refs. [56] [133]).
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To avoid major misconceptions, it should be indicated that the isoscat-
tering isotheory cannot change the numeric values of scattering angles, cross sec-
tions and other experimentally measured quantities. However, the isoscatter-
ing isotheory does require serious revisions of the theoretical interpretation
of measured quantities.

In closing, we should recall that rather vast studies have been con-
ducted on non-unitary scattering theories (see, e.g., Ref. [134] and papers
quoted therein).

As it is well known, these studies had to be abandoned because non-
unitary theories violate causality laws. By contrast, the isoscattering isothe-
ory is isounitary on the iso-Hilbert isospace over an isofield, thus restoring
causality (Section 2.9).

This occurrence illustrates again the importance of isomathematics for
the verification of the EPR argument and related applications.

4.16. Geno- and Iso-chemistry.
The Lie-admissible mathematical and physical methods of Section 2 have
allowed the “completion” of quantum chemistry into Lie-admissible hadronic
chemistry, also known as genochemistry [60], which is the first known chem-
ical formulation specifically built for the consistent treatment of chemical
reactions at large and energy releasing chemical processes in particular.

As it is well known but generally ignored, chemical reactions are gen-
erally irreversible over time, while quantum chemistry is strictly reversible.
Hence, the EPR argument on the “lack of completion of quantum mechan-
ics” does indeed apply to quantum chemistry.

In addition to a “completion” for chemical reactions, quantum chem-
istry needs an additional “completion,” this time, for the achievement of
an attractive force between the identical electrons of valence couplings in
molecular structures (Section 1.6).

Since isolated molecules existing in nature are stable, thus being re-
versible— over time, and so are their valence electron bonds, there was
the need of building the Lie-isotopic particularization of the Lie-admissible
hadronic chemistry which became known as isochemistry because based on
the isomathematics of Section 3.

Isochemistry did indeed achieve the first known attractive force be-
tween identical electrons in valence couplings [60] in a form permitting
the exact representation of experimental data on the hydrogen [103] and
the water [104] molecules.

As reviewed in details in Paper II, these studies essentially established
that the contact, non-potential interactions occurring in deep mutual penetra-
tion/entanglement of the wavepackets of particles (Figure 2) are strongly attrac-
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tive, thus being responsible for the neutron and other hadron syntheses (Section
1.4), as well as for the attractive force between identical electrons in valence pairs
(Section 1.6), thus illustrating the truly fundamental character of short range, con-
tact, non-potential interactions in the ultimate structure of nature.

5. CONCLUDING REMARKS.
In 1935, A. Einstein, B. Podolsky and N. Rosen presented the view that
quantum mechanics is not a complete theory [1].

Following decades of preparatory works, R. M. Santilli published in
1998 paper [7] that:

1) Confirmed the validity of the objections against the EPR argument
by Bohr [2], Bell [3], von Neumann [4] and others for point-particles in
vacuum under linear, local and potential/Hamiltoian interactions exterior
dynamical problems;

2) Proved the inapplicability (rather than the violation) of said objec-
tions for extended, thus deformable particles within hyperdense physical
media with ensuing linear and non-linear, local and non-local and poten-
tial as well as non-potential/non-Hamiltonian interactions expected in the
structure of hadrons, nuclei, stars and black holes (interior dynamical sys-
tems);

3) Proved the existence of hidden variables [5] for interior dynamical
systems when represented via the isotopic branch of hadronic mathemat-
ics and mechanics;

4) Achieved a consequential exact representation of nuclear magnetic
moments; and

5) Showed the apparent existence of identical classical counterparts for
extended particles in interior dynamical conditions.

More recently, Santilli completed the above proof in paper [8] by show-
ing that the standard deviations for coordinates ∆r and momenta ∆p ap-
pear to progressively tend to zero for extended particles within hadrons,
nuclei and stars, and appear to be identically null for extended particles
at the limit conditions in the interior of gravitational collapse, essentially
along Einstein’s vision.

In this paper, we have reviewed and upgraded the mathematical, phys-
ical and chemical methods used for proofs [7] [8], with particular reference
to the following aspects:

1) Review and upgrade the Lie-admissible and Lie-isotopic “comple-
tions” of 20th century applied mathematics for the representation of time
irreversible and reversible interior systems, respectively,, which “comple-
tions” were initiated by Santilli in 1978 [16] when at Harvard University
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with DOE support under the names of geno- and iso-mathematics, respec-
tively, and waere subsequently studied by various authors [55];

2) Review and upgrade the “completions” of quantum mechanics and
chemistry into the Lie-admissible and Lie-isotopic branches of hadronic
mechanics and chemistry that were also initiated by Santilli in 1978 [17]
under the names of genotopic and isotopic branches of hadronic mechanics
and chemistry, which “completions” were then studied by various authors
[56];

3) Review and upgrade the main aspect of the studies herein consid-
ered, namely, the “completions” of the Newton-Leibnitz differential cal-
culus into forms applicable to irreversible and reversible interior systems
of extended particles, which “completions” were initiated by Santilli in the
1996 paper [115] under the name of geno- and iso-differential isocalculus and
studied in details by S. Georgiev [83] and other mathematicians [55].

In a second paper of this series, we review and upgrade geno- and iso-
symmetries for interior systems and then review the apparent proofs [7] [8]
of the EPR argument.

In the third paper of this series, we study specific cases of interior dy-
namical systems in particle physics, nuclear physics and chemistry that
progressively approach classical determinism, and present applications to
new clean energies that are prohibited by quantum mechanics, yet fully
admitted by its “completion.”
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