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Studies on A. Einstein, B. Podolsky and
N. Rosen argument that “quantum

mechanics is not a complete theory,” II:
Apparent confirmation of the EPR

argument
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Abstract

In 1935, A. Einstein expressed his historical view, jointly with B. Podol-
sky and N. Rosen, that quantum mechanics could be “completed”
into a form recovering classical determinism at least under limit con-
ditions (EPR argument). In the preceding Paper I, we have outlined
the novel methods underlying the “completion” of quantum mechan-
ics into hadronic mechanics for the representation of extended, thus
deformable particles within physical media. In this Paper II, we study
the isosymmetries for interior dynamical systems; we confirm the 1998
apparent proof that interior dynamical systems admit a classical coun-
terpart; we confirm the 2019 apparent proof that Einstein’s determin-
ism is progressively approached for extended particles in the interior
of hadrons, nuclei and stars, while being fully verified in the inte-
rior of gravitational collapse; and we show for the first time that the
recovering of Einstein’s determinism in interior systems implies the
apparent removal of quantum mechanical divergencies. In the sub-
sequent Paper III, we present a number of illustrative examples and
novel applications in mathematics, physics and chemistry.
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1. INTRODUCTION
1.1. The EPR argument.
As it is well known, Albert Einstein did not accept quantum mechanical
uncertainties as being final, for which reason he made his famous quote
“God does not play dice with the universe.”

More particularly, Einstein believed that “quantum mechanics is not a
complete theory,” in the sense that it could be broadened into such a form
to recover classical determinism at least under limit conditions.

Einstein communicated his views to B. Podolsky and N. Rosen and
they jointly published in 1935 the historical paper [1] that became known
as the EPR argument.

In view of the rather widespread belief that quantum mechanics is a fi-
nal theory valid for all conceivable conditions existing in the universe, ob-
jections against the EPR argument have been voiced by numerous schol-
ars, including by N. Bohr [2], J. S. Bell [3] [4], J. von Neumann [5] and
others (see Ref. [6] for a review and comprehensive literature). The field
became known as local realism and included the dismissal of the EPR argu-
ment based on claims that quantum axioms do not admit hidden variables
λ [7] [8].

1.2. Outline of Paper I.
This paper, and the preceding Ref. [9] (hereinafter referred to as Paper I),
are dedicated to the review and upgrade of decades of studies by math-
ematicians, physicists, and chemists (see Refs. [10] to [71] and papers
quoted therein) on the apparent proof of the EPR argument via the “com-
pletion,” also called isotopic lifting, of quantum mechanics into the axiom-
preserving hadronic mechanics (see the 1995 monographs [29] [30] [31] and
literature quoted therein).

More specifically, in Section I-1.1, we have outlined the EPR argument
[1] jointly with representative objections [2] to [6].

In Section I-1.2, we have outlined the apparent proof by R. M. Santilli
[10] (See also the detailed study in monograph [30], particularly Chapter 4
and Appendix 4C, page 166) that interior dynamical systems represented
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Figure 1: In this figure, we present a conceptual rendering of the tacit assumption un-
derlying the objections against the EPR argument [2] - [6], namely, the representation
of particles as being point-like because mandated by the Newton-Leibnitz differential cal-
culus underlying quantum mechanics, namely, the representation of particles as isolated
points in empty space. A first consequence is that, being dimensionless, particles can only
be at a distance, with ensuing Einstein’s argument on the need for superluminal inter-
actions to explain quantum entanglement [1]. A second consequence is that, being at a
distance, the sole possible interactions are of linear, local and potential type, under which
assumptions the objections against the EPR argument are indeed valid.

with hadronic mathematics and mechanics admit classical counterparts.
In the same Section I-1.2, we have outlined the apparent second proof

by Santilli [11] that classical determinism is progressively approached in
the interior of hadrons, nuclei, stars and gravitational collapse as predicted
by Einstein.

In support of the plausibility of the EPR argument, in the subsequent
Sections I-1.3 to I-1.7, we have outlined insufficiencies of quantum me-
chanics for time-irreversible processes, particle physics, nuclear physics,
chemistry, and other fields. We have also provided various references in-
dicating the apparent resolution of said insufficiencies by hadronic me-
chanics.

In Section I-2, we have outlined the Lie-admissible covering of Lie’s the-
ory [12] [13], with ensuing time-irreversible Lie-admissible brach of hadronic
mechanics, also known as genomechanics, [12] [14] allowing studies on the
compatibility of mechanics with thermodynamics, said compatibility be-
ing notoriously impossible for quantum mechanics.

Quantum mechanics and the objections against the EPR argument are
formulated for time-reversal invariant systems of exterior dynamical sys-
tems. Therefore, in preparation for the proof of the EPR argument stud-
ied in Section 3, we have outlined and upgraded in Section I-3 the time-
reversal invariant Lie-isotopic subclass of Lie-admissible mathematics, also
known as isomathematics, [15] [18] which is used for the representation of
time-reversible invariant interior dynamical systems.
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Figure 2: A conceptual rendering of the main assumption of the apparent proofs [10]
[11] of the EPR argument [1], is the representation of particles as extended, deformable
and hyperdense in conditions of mutual overlapping/entanglement with ensuing contin-
uous contact at a distance which eliminates the need for superluminal interactions to
explain quantum entanglement. A first implication is the need, for consistency, of gen-
eralizing Newton-Leibnitz differential calculus from its historical form solely definable
at isolated points, to a covering form definable in volumes [21]. Another implication is
the emergence of contact, non-linear, non-local and non-potential interactions that, being
not representable by Hamiltonians are Lagrangians, require a structural lifting of the Lie
algebra of quantum mechanics under which the objections against the EPR argument are
inapplicable (Section 3). Intriguingly, the “completions” here considered turned out to
be of isotopic/axiom-preserving type, thus being fully admitted by quantum mechanical
axioms, merely subjected to a realization broader than that of the Copenhagen school.
The apparent proofs of the EPR argument [10] [11] become an unavoidable consequence
of the indicated “completions” (Section 3).

In the same Section I-3, we have devoted particular attention to the
“completion” of conventional Hilbert spaces [19], numeric fields [20] and
Newton-Leibnitz differential calculus [21] into forms defined on volumes,
rather than points.

In the same Section I-1.3, we have provided particular attention to the
main methods for the proofs of the EPR argument, namely, the axiom-
preserving, isotopic lifting of Lie’s theory [26], today known as the Lie-Santilli
isotheory [38].

Finally, in Section I-4, we have outlined and upgraded the time-reversal
invariant isotopic branch of hadronic mechanics, also known as isomechanics
[30] which provides the dynamical foundations of the proofs of the EPR
argument [10] [11].

1.3. Basic assumptions.
The most dominant aspects underlying the studies here considered are:
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1) The validity of quantum mechanics for point-like particles in vac-
uum with ensuing linear, local and action-at-a-distance/potential interac-
tions (exterior dynamical problems) occurring in atomic structures, particles
in accelerators, crystals and numerous other systems in nature (Figure 1);

2) The “completion” of quantum mechanics into hadronic mechanics
for the representation of extended, therefore deformable and hyperdense
particles within physical media with ensuing, additional, non-linear, non-
local and contact/non-potential interactions (interior dynamical problems),
occurring in the structure of hadrons, nuclei and stars, with limit condi-
tions occurring in the interior of gravitational collapse where the inappli-
cability (rather than the violation) of quantum mechanics is already ac-
cepted by the majority of serious scholars (Figure 2, 3).

The central assumption of these studies is the axiom-preserving lifting
of the conventional associative product ab = a × b between all possible
quantum mechanical quantities (numbers, functions, matrices, etc.) into
the isoproduct [14] [26] (Section 3)

a ? b = a T̂ b, (1)

where T̂ , called the isotopic element, is restricted to be positive-definite,
T̂ > 0, but possesses otherwise an unrestricted functional dependence on
all needed local variables.

Refs. [14] [26] constructed an axiom-preserving isotopy of the various
branches of Lie’s theory, resulting in a theory today known as the Lie-
Santilli isotheory [38] (Section I-3.7) with isotopic lifting of lie algebras of
the type [10]

[Xî,Xj] = Xi ? Xj −Xj ? Xi = Ck
ijXk. i, j = 1, 2, ..., N. (2)

Following laborious efforts for the achievement of mathematical matu-
rity, Ref. [10] applied the Lie-Santilli isotheory to the isotopy ŜU(2) of the
SU(2) spin with three-dimensional isoalgebras of type (2) and introduced
the realization of hidden variables [7] [8] of the type

T̂ = Diag.(1/λ, λ), DetT̂ = 1. (3)

Ref. [10], therefore establishing that, contrary to objections [2] to [6],
the abstract axioms of quantum mechanics do indeed admit explicit and concrete
realizations of hidden variables.

The proof in Ref. [10] that interior systems admit identical classical
counterparts was consequential (Section 3).
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Figure 3: A conceptual rendering of the central notion used for the study of the EPR
argument, namely, a mathematically consistent representation invariant over time of ex-
tended, deformable and hyperdense particles in interior conditions, such as protons in
the interior of a star, thus being under the most general known (non-singular) non-linear,
non- local and non-potential interactions fully representable via the isotopic element of
isoproduct (1).

Isoproduct (1) also allows a direct and immediate representation of ex-
tended particles in conditions of mutual penetration with realizations of
the type (Figure 3) [33]

T̂ = Πk=1,...,NDiag.(
1
n2
1k
, 1
n2
2k
, 1
n2
3k
, 1
n2
4k

)e−Γ,

k = 1, 2, ..., N, µ = 1, 2, 3, 4,

(4)

where n2
1, n

2
2, n

2
3, (called characteristic quantities) represent the deformable

semi-axes of the particle normalized to the values n2
k = 1, ‘k = 1, 2, 3 for

the sphere; n2
4 represents the density of the particle considered normal-

ized to the value n4 = 1 for the vacuum; and Γ represents non-linear,
non-local and non-Hamiltonian interactions caused by mutual penetra-
tions/entanglement of particles.

The smaller than 1 absolute value of the isotopic element T̂ occurring
in all known applications [26]-[36]

| T̂ | ≤ 1, (5)

permitted Ref. [? ] to show that the standard deviations ∆r and ∆p appear to
progressively tend to zero with the increase of the density of the medium, and ap-
pear to achieve full classical determinism in the interior of gravitational collapse,
as originally conceived by Einstein.
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The initial construction of the isotopies of 20th century applied mathe-
matics with isoproduct (1) defined over conventional numeric fieldsF (n,×,-
1) [26] turned out to be inconsistent because the underlying time evolution
is non-unitary, thus causing the lack of invariance over time of the tradi-
tional basic unit 1, with ensuing inapplicability over time of the entire field
F (n,×, 1).

The above occurrence mandated the construction of isofields F̂ (n̂, ?, Î)
[20] [41](Section I-3.3) with basic isounit

Î = 1/T̂ > 0, (6)

and isonumbers n̂ = nÎ equipped with isoproduct (1).
Ref. [20] essentially established that the abstract axioms of a numeric field

do not require that the multiplicative unit of the field be the trivial number 1, since
said unit can be an arbitrary quantity with an unrestricted functional dependence
on local variables, provided that said multiplicative unit is positive definite and
the field is lifted into a compatible form.

Despite all the above efforts, the ensuing isomathematics was still in-
applicable to the proof of the EPR argument because it lacked the crucial
invariance over time, namely, the prediction of the same interior dynamical
systems under the same conditions but at different times.

The above occurrence forced the construction of the covering of the
Newton-Leibnitz differential calculus into the covering isodifferential iso-
calculus [21] [44] (Section I-3.6) with basic isodifferential (Figure 2) [? ]

d̂r̂ = T̂ d[rÎ(r, ...)] = dr + rT̂ dÎ(r, ...), (7)

and corresponding isoderivative

∂̂f̂(r̂)

∂̂r̂
= Î

∂f̂(r̂)

∂r̂
. (8)

In essence, Ref. [21] established the inapplicability of the conventional
differential calculus whenever the axioms of numeric fields admit mul-
tiplicative units with a dependence on the differentiation variable, with
ensuing inapplicability of quantum mechanics, as well as of the objections
against the EPR argument, for interior dynamical systems.

The “completion” of the differential calculus into an isotopic form com-
patible with basic isoproduct (1) finally allowed the achievement of invari-
ance over time (Section I-3.9), thus signaling the achievement of maturity
for the apparent proof of the EPR argument reviewed.
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Figure 4: In the l.h.s. of this picture, we present a conceptual rendering of the structure
of nuclei as ideal spheres with isolated point-like particles in their interior. This view is
an inevitable consequence of the elaboration of quantum mechanics via the conventional
differential calculus, resulting in rather serious insufficiencies in nuclear physics outlined
in Section I-1.5. In the r.h.s. of this picture, we present a conceptual rendering of the
representation of nuclei as occurring in the physical reality, namely, as a collection of
extended, therefore deformable charge distributions in condition of partial mutual pene-
tration according to Eq. (4) of isomathematics and related isomechanics, thus permitting
the resolution of at least some of the insufficiencies of quantum mechanics in nuclear
physics reviewed in Section I-1.5.

In Section 2 of this paper, we complete the methodological needs by
outlining and upgrading the time-reversal invariant coverings of conven-
tional spacetime symmetries, known as isosymmetries, for systems of ex-
tended particles in interior conditions; in Section 3, we review and up-
grade the Lie-isotopic SU(2)-spin symmetry and related proofs [10] [11]
of the EPR argument.

A few comments on terminologies appear to be recommendable.
The word “completion” is used in these studies to honor the memory of

Albert Einstein and should not be intended to indicate “final” theories. In
fact, isomathematics and isomechanics admit coverings of Lie-admissible
character [12] (Section I-2) that, in turn, admits coverings of hyperstruc-
tural character [43], with additional coverings remaining possible in due
time.

The terms “non-Hamiltonian interactions” are intended to indicate in-
teractions that are not representable with a Hamiltonian, and are techni-
cally identified as interactions violating the integrability conditions for
the existence of a Hamiltonian, namely, the conditions of variational self-
adjointness [25].

When dealing with stable and isolated interior dynamical systems, the
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terms “non-conservative forces” are strictly referred to internal non-Hamil-
tonian exchanges verifying conditions (1-55) for the verification of the ten
conventional total conservation laws for the total energy, momentum, an-
gular momentum and the uniform motion of the center of mass.

The terms “physical media” refer to media composed by matter in its
various states, and are often referred to as hadronic media, in the sense that
the media are not composed by empty space, thus requiring the use of
hadronic mathematics and mechanics for their quantitative treatment.

The terms “extended particles” refer to: the wavepacket of elementary
particles such as the electron assumed to be of about 1 fm = 10−15 cm;
extended charge distributions for protons and neutrons when members of
a nuclear structure, also assumed to have a diameter of about 1 fm; and
stable nuclei when considering the structure of stars. Due to its crucial
significance for the structure of interior systems, a technical definition of
the notion of ”extended particles” will be given in Section 3 via the notion
of isoparticle as isorepresentations of space-time isosymmetries.

2. ISOSYMMETRIES
2.1. Foreword.
In this section, we study the axiom-preserving “completion” (or isotopic
lifting) of conventional space-time symmetries, known as Lie-isotopic sym-
metries, or isosymmetries for short, which provide the invariance of stable
and isolated (thus time reversible) interior dynamical systems of extended
particles at mutual distances smaller than their size as occurring, e.g., in
nuclear structures (Figure 3).

Lie-isotopic symmetries were first introduced by Santilli in the 1978
Harvard University paper [13] as a particular case of the broader Lie-admi-
sible symmetries for irreversible, non-conservative systems [14]. Isosymme-
tries were then studied in various subsequent works quoted in this section.

The understanding of this section requires a knowledge of the Lie-
Santilli isotheory (Section I-3.7), which was first formulated in monographs
[25] [26] over the field of real numbers. Isosymmetries were then formu-
lated in monographs [29] [30] with the full use of isomathematics, includ-
ing the use isofields [20] [41] and the isodifferential calculus [21] [44] (see
Refs. [38] [46] [47] [48] for works on the Lie-Santilli isotheory, and Ref. [45]
for a general review with applications and experimental verifications).

The assumption at the foundation of isosymmetries is the preservation
of the abstract axioms of 20th century space-time symmetries, and the mere con-
struction of their broadest possible realization permitted by isomathematics.

Consequently, criticisms of isosymmetries and their novel implications
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Figure 5: The l.h.s. of this figure illustrates Keplerian systems for which space-time sym-
metries have been constructed, namely, exterior dynamical systems of point-like masses
orbiting in vacuum around a heavier point-like mass known as the Keplerian center. The
r.h.s. of this figure illustrates interior systems for which isosymmetries have been built,
namely, systems of extended particles in conditions of mutual penetration without any
Keplerian center.

are de facto criticisms on 20th century space-time symmetries and their
implications

2.2. Inapplicability of Lie symmetries for interior systems.
A rather widespread view of 20th century physics is the lack of any differ-
ence between exterior and interior dynamical systems on grounds that the
latter can be reduced to their elementary constituents, by therefore recov-
ering exterior conditions.

The above view was disproved by R. M. Santilli in his Ph. D. thesis (see
the review in Ref. [30]) on numerous grounds, the first being the notori-
ous incompatibility of quantum mechanics with thermodynamics whose
resolution motivated the Lie-admissible generalization of Lie algebras and
related physical theories [29] [30].

The absence of structural differences between exterior and interior sys-
tems was dismissed more directly with the following [26] [28]:

NO REDUCTION THEOREM 2.2.1: A classical dynamical system with non-
conservative interior forces cannot be consistently reduced to a finite number of
isolated particles all in conservative conditions and, vice- versa, the latter system
cannot reproduce the former under the correspondence or other principles.

The first direct consequence of the above No Reduction Theorem is
the “inapplicability” (rather than the “violation”) for interior dynamical
systems of conventional space-time symmetries that have been proved to
be so effective for exterior dynamical systems.

Said inapplicability was also proved [loc. cit.] from the fact that the
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Galileo and the Lorentz-Poincaré symmetries can only provide a non-relativ-
istic and relativistic characterization, respectively, of Keplerian systems, name-
ly, systems of point-like masses orbiting in vacuum around a heavier mass
called the Keplerian nucleus [26].

However, interior dynamical systems do not admit a Keplerian struc-
ture because nuclei have no nuclei [33] and the same happens for hadrons,
stars and gravitational collapse (Figure 5).

It is then possible to prove, e.g., via the imprimitivity theorem, that the
lack of existence of a Keplerian structure implies the lack of exact validity
of conventional space-time symmetries [26] [30].

On more technical grounds, Lie’s theory is known to be solely applica-
ble to exterior systems of point-like particles in vacuum with ensuing sole
possible, linear, local and Hamiltonian interactions.

Experimental evidence on interior dynamical systems, e.g., on nuclear
volumes compared to the volumes of individual nucleons, establishes that
nuclei are composed of extended charge distributions in conditions of par-
tial mutual penetration/entanglement with the ensuing existence of ad-
ditional, non-linear, non-local and non-Hamiltonian interactions under
which Lie’s theory is inapplicable.

Hence, the transition of particles from exterior to interior conditions
implies the inapplicability of the SU(2)-spin symmetry with consequential
inapplicability of Bell’s inequality [3] and other objections against the EPR
argument [6] in favor of suitable covering vistas [10] [11].

In any case, the SU(2) symmetry, while unquestionable effective for
exterior dynamical systems, has been unable to provide a consistent rep-
resentation of the spin of particles and nuclei, thus warranting the search
for a suitable “completion.”

2.3. The fundamental theorem on isosymmetries.
The construction of isosymmetries requires the full use of isomathemat-
ics with particular reference to the Lie-Santilli isotheory formulated on
isospaces over isofield and elaborated via the isodifferential calculus (Sec-
tion I-2.7).

Said construction can be done with the following theorem (for brevity,
see the proof in Section 1.2 , Vol. I of Refs. [36]):

THEOREM 2.3.1: Let G be an N-dimensional Lie symmetry of the line element of
a k-dimensional metric or pseudo-metric space S(x,m, I) over a numeric field F
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with coordinates x, metric m over a numeric field F with conventional unit I ,

G : x′ = Λ(w)x, y′ = Λ(w)y, x, y ∈ S,

(x′ − y′)†Λ†mΛ(x′ − y′) ≡ (x− y)†m(x− y),

Λ†(w)mΛ(w) ≡ m. w ∈ F.

(9)

Then, all infinitely possible (non-singular) Lie-Santilli isotopies Ĝ of G on
isospace Ŝ(x̂, M̂ , Î) with isocoordinates

x̂ = xI, (10)

isometric
M̂ = m̂Î = (T̂ ki mkj)Î , (11)

and isounit
Î = 1/T̂ > 0, (12)

over an isofield F̂ with isounit vÎ leave invariant the isoline element of the isospace
Ŝ(x̂, M̂ , Î):

Ĝ : x̂′ = Λ̂(ŵ) ? x̂, ŷ′ = Λ̂(ŵ) ? ŷ, x̂, ŷ ∈ Ŝ,

(x̂′ − ŷ′)† ? Λ̂† ? M̂ ? Λ̂ ? (x̂′ − ŷ′) ≡ (x− y)†m̂(x− y),

Λ̂†(ŵ) ? M̂ ? Λ̂(ŵ) ≡ M̂.

(13)

All infinitely possible so constructed isosymmetries Ĝ are locally isomorphic to
the original symmetry G.

The reader should note that, while a given Lie symmetryG is unique as
well known, there can be an infinite number of covering isosymmetries Ĝ
with generally different explicit forms o the isotransformations due to the
infinite number of possible isotopic elements representing the infinitely
different internal interactions of extended particles within physical media.

Note also that all possible isotopic images of a given Lie symmetry
can be explicitly and uniquely constructed via the sole knowledge of the
original Lie symmetry and of the isotopic element T̂ > 0, or of the isounit
Î = 1/T̂ , which property shall be hereon tacitly assumed.

2.4. Isospaces and isogeometries.
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As it is well known, the fundamental representation space of relativistic
space-time symmetries is the conventional Minkowski space M(x, η, I) for-
mulated on the field of real numbersRwith coordinates x = (x1, x2, x3, x4 =
ct), metric η = Diag.(1, 1, 1,−1), unit I = Diag(1, 1, 1, 1) and invariant

x2 = (xµηµνx
ν)I =

= (x2
1 + x2

2 + x3
3 − c2t2)I,

(14)

where the trivial multiplication by the conventional unit I = Diag.(1, 1, 1, 1)
is done for compatibility with isomathematics.

The fundamental isospaces of space-time isosymmetries are given by
the infinite family of iso-Minkowski isospaces, also called Minkowski-Santilli
isospaces, M̂(x̂, Ω̂, Î) formulated on the isofield of isoreal isonumbers R̂.
(Section I-3.9), which isospaces were first introduced by R. M. Santilli in
Ref. [23] of 1983 and then treated in details in works [29] [30].

Iso-Minkowskian isospaces are characterized by space-time isocoordi-
nates x̂ = xÎ ; isounit Î = 1/T̂ , isometric

Γ̂ = (T̂ ρµηρν)Î , (15)

(where one should note the necessary structure of an isomatrix [29]), positive-
definite isotopic element (4) representing a system of extended particles in
interior dynamical conditions with a restricted functional dependence on
local quantities such as coordinates x, momenta p, energy E, frequency
ν, density α, temperature τ , pressure pi, wavefunction ψ, etc., under the
conditions

nµ = nµ(x, p, E, ν, α, τ, π, ψ, ∂ψ, ...) > 0, µ = 1, 2, 3, 4, (16)

Γ(x, p, E, ν, α, τ, π, ψ, ∂ψ, ...) ≥ 0, (17)

T̂ = e−Γ � 1. (18)

Iso-Minkowskian isospaces are characterized by the infinite family of
isoinvariants (I-28) with isotopic element (4) that, for the case of one single
extended particle can be written

x̂2̂ = x̂µ ? Ω̂µν ? x̂
ν = (xµη̂µνx

ν)Î =

= (
x21
n2
1

+
x22
n2
2

+
x23
n2
3
− t2 c2

n2
4
)Î ,

(19)

where the exponential exp−Γ has been absorbed in the characteristic quan-
tities nµ, and the final multiplication by the isounit is necessary for the
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isoinvariant to be an isoscalar, namely, an element of the isoreal isofield
[20] (Section I-3-5).

The following aspects treated in Paper I are important for the under-
standing of the apparent proof of the EPR argument:

1. The characteristic quantities n2
1, n

2
2, n

2
3, admit the first interpretation

as representing the deformable semi-axes of elementary or composite par-
ticles normalized to the values for the sphere n2

1 = n2
2,= n2

3 = 1,.

2. The characteristic quantity n2
4 admit the first interpretation as repre-

senting the density of the hadronic medium normalized to the value n4 = 1
for the vacuum.

3. The function Γ ≥ 0 provides an invariant representation (Section
I-3-9) of all non-linear, non-local and non-Hamiltonian interactions.

4. Property (18) is verified for all applications of isosymmetries to date
[10] to [68].

5. The correct elaboration of iso-Minkowskian isospaces requires the
use of the isospherical and isohyperbolic isocoordinates (see Refs. [29] [30]).

6. Isoinvariant (19) provides a unified representation of both exterior
and interior gravitational problems. In fact, K. Schwartzchild wrote in
1916 two important papers, the first paper [49] on the exterior gravitational
problem which became world famous for its initiation of gravitational sin-
gularities, and the second paper [50] in the interior gravitational problem
which has been vastly ignored, except rare studies (such as that in Section
23.2, page 609, Ref. [52]). Such an oblivion is essentially due to the fact
that Schwartzchild’s second paper is not aligned with the widespread ten-
dency of reducing masses to point-like constituents, in which case all dif-
ferences between exterior and interior gravitational problems disappear
to the detriment of the depth of the gravitational analysis. Readers should
keep in mind the full parallelism between exterior and interior dynamical
problems for particles and gravitation.

7. The exterior gravitational interpretation of isoinvariant (19) is given by
the following identical representation of Schwartzchild’s exterior metric
[50]

T̂kk =
1

1− 2M
r

, T̂44 = 1− 2M

r
. (20)

The corresponding interior gravitational representation is given by the fol-
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lowing isotopy of Schwartzchild exterior metric

T̂kk =
1

(1− 2M
r

)n2
k

, T̂44 = (1− 2M

r
)/n2

4. (21)

In view of the arbitrariness of the functional dependence of the character-
istic quantities nµ, it is easy to prove that Schwartzchild’s interior metric
[50] is a particular case of the much broader class of interior gravitational
models (21).

8. The geometry of the iso-Minkowskian isospaces, first presented by
Santilli in Ref. [24] under the name of iso-Minkowskian isogeometry, contains
the machinery of the Riemannian geometry (due to the dependence of the
isometric η̂ on the local coordinates x), although such a machinery is for-
mulated for consistency over isofields [20] and elaborated via the isodiffer-
ential isocalculus [21] (Section I-3.5). Hence, the isominkowskian isogeometry
can unify exterior and interior problems for both particles and gravitation.

9. Recall that iso-Minkowskian isospaces are locally isomorphic to
the conventional Minkowski space (Refs. [23] [24] and Theorem 2.3.1).
Therefore, the iso-Minkowskian isogeometry has a null curvature. This is due
to the fact that, under isotopic lifting, the conventional Minkowski met-
ric η = Diag.(1, 1, 1,−1) is lifted into a coordinate-dependent isometric
T̂ (x)η = η̂(x) which is identical to any given Riemannian metric

η → η̂(x) = T̂ (x)η = g(x). (22)

Jointly, the original unit of the Minkowski space Î = Diag.(1, 1, 1, 1) is
lifted by the inverse amount

I > 0 → Î(x) = 1/T̂ (x) > 0, (23)

resulting in no actual curvature. The above features have suggested the
introduction of the new notion of isoflat isospace, referred to an isospace
that has null curvature when formulated on isofields, while recovering
conventional curvature when formulated on conventional fields. Read-
ers should be aware that the achievement of the universal symmetry of
(non–singular) Riemannian line elements studied in the next sections are
due precisely to the isoflatness of the iso-Minkowski isospace since no
such symmetry is possible for a convemtional Riemannian space, as well
known.

Recall that the fundamental representation space of symmetries in 3-
space dimensions is the conventional Euclidean space E(r,×, I with coor-
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dinates r = (x1, x2, x3), metric δ = Diag.(1, 1, 1) and unit I = Diag.(1, 1, 1)
on the conventional field of real numbers.

Similarly, the fundamental representation space of isosymmetries in 3-
dimensions is the iso-Euclidean isospace Ê(r̂, δ̂, Î), also called Euclid-Santilli
isospace (Refs. [14] [26] [29] and Section I-3.5) which is the space compo-
nent of the iso-Minkowskian isospace. As such, the iso-Euclidean isospace
is hereon tacitly assumed to be known.

2.5. Lorentz-Poincaré-Santilli isosymmetries.
2.5.1. Main references. Following, and only following the construction
of the isotopies of Lie’s theory, Santilli conducted systematic studies on
the isotopies of the various aspects of the Lorentz-Poincaré symmetry for
the achievement of the universal invariance of spacetime isoinvariant (19),
including:

1) The classical isotopies ŜO(3.1) of the Lorentz symmetry SO(3.1) [53];
2) The operator isotopies ŜO(3.1) of the Lorentz symmetry SO(3.1)

[54];
3) The isotopies ŜO(3) of the rotational symmetry SO(3) [55] [56] [57];
4) The isotopies ŜU(2) of the SU(2) spin symmetry [10] [58];
5) The isotopies P̂ (3.1) of the Poincaré symmetry P (3.1) [59] [60], which

included the universal symmetry of (non-singular) Riemannian line ele-
ments;

6) The isotopies P̂(3.1) of the spinorial covering P(3.1) of the Poincaré
symmetry [61] [62];

7) The isotopies M̂(3.1) of the Minkowskian geometry M(3.1) [24].
A general presentation is available in the 1995 monographs [29] [30]

with the full use of isomathematics, including isofields and isodifferential
calculus, with upgrades in the 2008 monographs [36].

The resulting infinite family of isosymmetries ŜO(3.1) are known as the
Lorentz-Santilli (LS) isosymmetries while the broader isosymmetries P̂ (3.1)

and P̂(3.1) are known as Lorentz-Poincaré-Santilli isosymmetries (see Refs.
[37] [42] [45] and papers quoted therein).

Experimental verifications of LPS isosymmetries for interior dynamical
systems are available in monographs [31] and in Section 3 of the more
recent review [63].

In inspecting the subsequent sections, the reader should be aware of
the “direct universality” of the LPS isosymmetries for the considered infi-
nite family of interior dynamical systems [64], including the treatment of
exterior and interior, particle and gravitational problems (Section 4).
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2.5.2. Basic definitions. As it is well known, the conventional Lorentz-
Poincaré (LP) symmetry is the symmetry of line element (14) which we
rewrite in the form

(x− y)2 = (xµ − yµ)ηµν(x
ν − yν)I =

= [(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 − (t1 − t2)2c2)] I,

η = Diag.(1, 1, 1,−c2), , I = Diag.(1, 1, 1, 1),

(24)

where the exponential component exp−Γ is again embedded for simplicity
in the characteristic quantities nµ2.

The LPS isosymmetry is the universal symmetry of the isoline element
(19) in the iso-Minkowski isospace M̂(x̂, Ω̂, Î) over the isoreal isonumbers
R̂ rewritten in the form

(x̂− ŷ)2̂ =
[
(x̂µ − ŷµ) ? Ω̂µν ? (x̂ν − ŷν)

]
=

= [xµ − yµ)η̂µν(x
ν − yν)] Î =

=
[

(x1−y1)2

n2
1

+ (x2−y2)2

n2
2

+ (x3−y3)2

n2
3
− (t1 − t2)2 c2

n2
4

]
Î ,

η̂ = T̂ η, T̂ = Diag(( 1
n2
1
, 1
n2
2
, 1
n2
3
, 1
n2
4
),

nµ = nµ(x, v, a, E, d, ω, τ, ψ, ∂ψ, ...) > O, Î = 1/T̂ > 0.

(25)

2.5.3. Isotransformations. By following Theorem 2.3.1, the isotransforma-
tions of the LPS isosymmetries can be written

x̂′ = Λ̂(ŵ) ? x̂, (26)

where Λ̂(ŵ) = Λ(ŵ)Î , resulting in generally non-linear isotransformations,
including isotranslations of the type

x̂′ = x̂+ Â(x̂, ...), (27)

verifying the following property

Λ̂† ? η̂ ? Λ̂ = Λη̂Λ†. (28)

Under the condition of isomodularity

D̂et (Λ̂) = +Î , (29)
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we have the isoconnected LS isosymmetries ŜO
0
(3.1) and the isoconnected LPS

isosymmetries P̂ 0(3.1).
Consider the conventional generators of the Poincaré symmetry

(Jk) = (Jµν), Pµ, k = 1, 2, 3, 4, 5, 6, µ, ν = 1, 2, 3, 4. (30)

By keeping in mind isoexponentiation (I-16), the isotransformations of
ŜO

0
(3.1) can be written [60]

x̂′ = (êiJkwk) ? x̂ ? (ê−iJkwk) =

=
[
(eiJkT̂wk)x(e−iwkT̂ Jk)

]
Î ,

(31)

and the isotranslations Â(3.1) can be written

x̂′ = (êiPµaµ) ? x̂ ? (ê−iPµaµ) =

=
[
(eiPµT̂ aµ)x(e−iaµT̂ Pµ)

]
Î .

(32)

It is evident that the above isotransformations do constitute Lie-Santilli
isogroups according to Theorem I-2.7.3.

2.5.4. Isocommutation rules. As recalled earlier, the total quantities of an
isolated, stable, interior system must be conserved for consistency.

In order to represent this evidence, the Lie-Santilli isotheory was con-
structed [26] in such a way to preserve conventional generators, because
they represent total conservation laws, and isotopically lift their product.

By expanding the preceding finite isotransforms in terms of the isounit,
the LPS isoalgebra ŝo0(3.1) is characterized by the conventional generators
of the LP algebra and the isocommutation rules [30] [60] (here written in
their projection on conventional spaces over conventional fields)

[Jµν ,̂Jαβ] =

= ı(η̂ναJβµ − η̂µαJβν − η̂νβJαµ + η̂µβJαν),

[Jµν ,̂Pα] = i(η̂µαPν − η̂ναPµ)

(33)

[Pµ̂,Pν ] = 0, (34)

η̂µν = T̂ η = (T̂ ρµηρν). (35)
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where one should note the appearance of the structure functions η̂(x, p,-
E, ν, α, τ, ψ, ....), rather than the traditional structure constants (Theorem
I-2.7.2).

The presence of structure functions η̂ in isocommutation rules (33)-(35),
Theorem I-3.7.2 and the analysis of Section I-3.8 imply the following im-
portant property (Section I-3.8):

LEMMA 2.5.1: LPS isosymmetries cannot be derived via non-unitary transforma-
tions of the conventional LP symmetry.

Despite the above non-equivalence, the property T̂ > 0, the topological
structure (+1,+1,+1,−1) of the isometric η̂ = T̂ η and Theorem 2.3.1 imply
that:

LEMMA 2.5.2. All LPS isosymmetries are locally isomorphic to the conventional
LP symmetry.

Recall from Section I-1 that an important limitation of quantum me-
chanics for the study of the EPR argument is the inability to achieve a
consistent and effective treatment of non-linear interactions that are ex-
pected in the structure of hadrons, nuclei and stars. In Section I-4.12, we
have shown that the isotopic “completion” of quantum mechanics into
hadronic mechanics does indeed allow a consistent and effective treatment
of non-linear interactions via their embedding in the isotopic element T̂ .

Due to the unrestricted functional dependence of the isotopic element
T̂ and, therefore, of the isometric η̂ = T̂ η, it is easy to see that the LPS
isosymmetries are indeed non-linear as a necessary condition to provide
the invariance of non-linear dynamical equations.

Note that isolinear isomomenta P̂µ isocommute on isospaces over isofields,
but they do not commute on conventional spaces over conventional fields, Eqs.
(35), thus confirming that the LPS isosymmetry is isolinear, that is, linear on
isospaces over isofields but generally non-linear in their projection on conven-
tional spaces over conventional fields.

This important property can be illustrated by recalling the isolinear
isomomentum (I-79) on a Hilbert-Myung-Santilli isospace Ĥwith isostates
ψ̂ > over the isocomplex isonumbers Ĉ

P̂µ ? |ψ̂ >= −iÎ∂µ|ψ̂ > . (36)
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Isocommutators (35) on Ĥ over Ĉ can then be explicitly written

[P̂µ,P̂ν ] ? |ψ̂ >= (P̂µ ? P̂ν − P̂ν ? P̂µ) ? |ψ̂ >=

= (−iÎ∂µ)T̂ (−iÎ∂ν)− (−iÎ∂ν)T̂ (−iÎ∂µ)T̂ |ψ̂ >=

= (iÎ∂µ∂ν − iÎ∂ν∂µ)|ψ̂ >= 0.

(37)

By contrast, the projection of the same isocommutators (35) on a con-
ventional Hilbert space H over the field of complex numbers C no longer
commutes,

[P̂µ, P̂ν ]|ψ̂ >= (P̂µP̂ν − P̂νP̂µ)|ψ̂ >=

= (−iÎ∂µ)(−iÎ∂ν)− (−iÎ∂ν)(−iÎ∂µ)|ψ̂ >6= 0.

(38)

because, in general, ∂µÎ 6= ∂ν Î , and this proves the isolinear character of
the isomomentum.

Besides a direct relevance for the structure of hadrons, nuclei and stars,
the above isolinearity has important implications, such as a new consistent
operator form of gravitation, a new grand unification and other advances
[35].

The presence of the structure functions in the isocommutation rules,
the capability to provide the invariance under non-linear interactions and
other features and applications outlined in Section 4 illustrate the non-
triviality of the Lie-Santilli isotheory.

2.5.5. Iso-Casimir Isoinvariants. The simple direct use of isocommutation
rules (33)-(35) establishes that the iso-Casimir-isoinvariants of p̂00(3.1) are
given by [60]

Ĉ1 = Î((t, r, p, E, µ, τ, ψ, ∂ψ, ...) > 0,

Ĉ2 = P̂ 2̂ = P̂µ ? P̂
µ = (η̂µνP

µP ν)Î =

= (
∑

k=1,2,3
1
n2
k
P 2
k − c2

n2
4
p2

4)Î ,

Ĉ3 = Ŵ 2̂ = Ŵµ ? Ŵ
µ, Ŵ = WÎ,

Ŵµ = ε̂µαβρ ? J
αβ ? P ρ,

(39)
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Figure 6: It was generally believed in the 20th century physics that the rotational
symmetry is broken for ellipsoids. Santilli isorotational isosymmetry has restored
the exact character of the rotational symmetry for all possible (topology preserv-
ing) deformations of the sphere [30].

and they are at the foundation of classical and operator relativistic isome-
chanics (Section I-4) with deep implications for structure models of interior
dynamical systems [31].

2.5.6. Isorotations. By using isotransforms (32), the explicit form of the
isorotations ŜO(3), first derived in Refs. [55] [56], can be written in the
isoplane (x̂,1 , x̂2) of iso-Euclidean isospaces Ê(x̂, ∆̂, Î) over the isoreals R̂,
here formulated for simplicity in their projection on the conventional Eu-
clidean space (see Ref. [30] for the general case)

x1′ = x1 cos[θ(n1n2)−1]− x2 n
2
1

n2
2

sin[θ(n1n2)−1],

x2′ = x1 n
2
2

n2
1

sin[θ(n1n2)−1] + x2 cos[θ(n1n2)−1].

(40)

It was generally believed in the 20th century that the SO(3) symmetry
is broken for ellipsoid deformations of the sphere. By contrast, as shown
by isotransforms (40) the ŜO(3) isosymmetry achieves the invariance of el-
lipsoids (Figure 6). But SO(3) and ŜO(3) are locally isomorphic (Theorem
2.3.1). We therefore have the following property [55] [56]:

LEMMA 2.5.3: The Lie-Santilli ŜO(3) isosymmetry restores the exact character
of the rotational symmetry for all ellipsoid deformations of the sphere.

This property is due to the fact that the mutation of the semiaxes of the
sphere occur jointly with the inverse, mutation of the related units, thus
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maintaining the perfect spherical shape in isospaces over isofields

Radius 1k → 1/n2
k, Unit 1k → n2

k. (41)

Note the crucial role of isonumbers for the reconstruction of the ex-
act rotational symmetry because said reconstruction occurs thanks to the
isoinvariant by the isounit.

2.5.7. Lorentz-Santilli isotransforms. The infinite family of isoconnected
Lorentz-Santilli (LS) isotransforms ŜO

0
(3.1) on iso-Minkowskian isospaces

M̂(x̂, Ω̂, Î) over the isoreals R̂, first derived by in Ref. [53] of 1983, can
be written in the (x̂3, x̂4)-isoplane in their projection in the conventional l
Minkowski space M(x, η, I), as follows (see Ref. [30] for the general case):

x1′ = x1, x2′ = x2,

x3′ = γ̂(x3 − β̂ n3

n4
x4),

x4′ = γ̂(x4 − β̂ n4

n3
x3),

(42)

where
β̂ =

v3/n3

c/n4

, γ̂ =
1√

1− β̂2

. (43)

A significant aspect of Ref. [53] is the solution of the historical Lorentz
problem, namely, the invariance of locally varying speeds of light within
physical media

C =
c

n4

. (44)

In fact, Lorentz first attempted the invariance of the speed of light C =
c/n4, but had to restrict his study to the invariance of the constant speed
of light in vacuum c, due to insurmountable technical difficulties. Santilli
has shown that Lorentz’s difficulties were due to the use of Lie’s theory,
because, under the use of the covering Lie-Santilli isotheory, the invariance
of C = c/n4 was achieved in two pages of the 1983 letter [53].

A second significant aspect of Ref. [53] is the achievement of the first
invariant formulation of extended, thus deformable and hyperdense par-
ticles, as stated beginning with the title of the quoted paper.

It was generally believed in the 20th century that the Lorentz symmetry
SO0(3.1) is broken for locally varying speed of light within physical media
represented with the wiggly circle of Figure 7. Ref. [53] proved that the
isosymmetry ŜO

0
(3.1) achieves the invariance of C = c/n4. But SO0(3.1)
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Figure 7: It was generally believed in the 20th century physics that the Lorentz
symmetry is broken for locally varying speeds of light within physical media (here
represented with a wiggly light cone). The Lorentz-Santilli isosymmetry has re-
stored the exact validity of the Lorentz symmetry for interior dynamical problems
[53] [30].

and ŜO
0
(3.1) are locally isomorphic, thus restoring the exact character of

the abstract axioms of the Lorentz for all possible values C = c/n4. We
therefore have the following important property [30]:

LEMMA 2.3.5: The Lie-Santilli ŜO
0
(3.1) isosymmetry restores the exact validity

of Lorentz’s axioms for locally varying speeds of light.

This property is due to the reconstruction of the exact light cone on
the iso-Minkowskian isospace over isofields with maximal causal value c,
called the light isocone,

x̂2̂ = x̂2
3 + x̂2

4 = 0, (45)

while its projection on the conventional Minkowski space over conven-
tional fields represents a locally varying speed

x̂2 = (
x2

3

n2
3

− t2 c
2

n4
)Î = 0. (46)

This property is due to the fact that the mutation of the x̂3 and x̂4 iso-
coordinates occurs jointly with the inverse mutation of the corresponding
isounits, by therefore preserving the original perfect light cone with c as
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the maximal causal speed (see the 1966 monograph [30] for details)

x3 → x3

n3
, I3 = 1 → Î3 = n3

x4 = tc → x4

n4
= t c

n4
, I4 = 1 → Î4 = n4.

(47)

Another significant aspect of Ref. [53] is the achievement of the first
known invariance of non-linear, non-local and non-Hamiltonian interac-
tions thanks to their embedding in the characteristic n-quantities of the
isoinvariant (25).

2.5.8. Isotranslations. In view of their non-linearity, isotranslations in
four parameters aµ can be written in their projection in the conventional
Minkowski space [30]

x′µ = xµ + Aµ(a, x, . . .), (48)

and can be written via a power series expansion of the general expression

Aµ = aµ(n−2
µ + aα[n−2

µ ,̂Pα]/1! + . . .), (49)

The understanding of the isotopic completion of 20th century space-
time symmetries requires the knowledge that, when properly written on
iso-Minkowskian isospace over isofields, isotranslations recover their con-
ventional form . [30].

2.5.9. Isodilatations. Santilli introduced in Ref. [60] a novel one-dimensional
isoinvariance denoted D̂ which is given by the dilatation of the isometric
caused by its multiplication by as parameter w, while the isounit is jointly
subjected to the inverse dilatation

Ω̂ = η̂Î → ŵ ? Ω̂ = wη̂Î ′

Î → Î ′ = 1
w
Î ,

(50)

under which isoinvariant (25) remain manifestly unchanged.
In essence, the new symmetry originates from the fact that, for mathe-

matical consistency, isoinvariants must be elements of t isofields, thus hav-
ing structure (25), namely, isoinvariants must be given by a conventional
invariant multiplied by the isounit.

Ref. [60] showed that, by writing conventional invariants with the mul-
tiplication, in this case, by the trivial unit 1, the new dilatation symmetry
persists for conventional space-time symmetries,

η → η′ = wη, 1 → 1′ =
1

w
1. (51)
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The above properties imply the following:

LEMMA 2.5.5: The conventional Lorentz-Poincaré symmetry is eleven-dimensional
with structure

P 0(3.1) = so0(3.1)× A(3.1)×D, (52)

and, consequently, the Lorentz-Poincaré-Santilli isosymmetry is also eleven-dimen-
sional with the structure

P̂ 0(3.1) = ŝo0(3.1) ? Â(3.1) ? D̂. (53)

The above seemingly trivial property has permitted Santilli the study
of a new grand unification of electroweak and gravitational interactions
based on the embedding of gravitation in the isotopic degree of freedom
of the theory [35].

2.5.10. Isoinversions. The isotopic ”completion” of conventional inversions
has been studied in details in Refs. [30] and consists of the isotime isoinver-
sions

τ̂ t̂ = (τ t̂)Î (54)

plus the isospace isoinversions

π̂r̂ = (πr̂)Î (55)

where τ and π are conventional time and space inversions, respectively.
Despite their simplicity, Santilli has shown in Ref. [30] that not only

continuous, but also discrete space-time symmetries can be reconstructed as be-
ing exact on isospaces over isofields when assumed to be broken on conventional
spaces over conventional fields.

2.5.11. Isospinorial LPS isosymmetry. Recall that the spinorial covering
P0(3.1) of the connected component of the LP symmetry P 0(3.1) is con-
structed via the use of the Dirac gamma matrices. In fact, the conventional
generators are realized via suitable combination of Dirac gamma matrices.

By following the same historical pattern, Santilli proposed in the 1995
communication [61] of the Joint Institute for Nuclear Research, Dubna, Rus-
sia (see also the subsequent paper [62] ) the following eleven-dimensional
isotopic “completion” P̂0(3.1) of P0(3.1)

P̂(3.1) = ŜL(2.Ĉ) ? Â(3.1) ? D̂, (56)
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with realization of the generators in terms of the Dirac-Santilli isogamma
isomatrices Γ̂µ = γ̂µÎ , Eqs. (I-89),

ŜL(2.Ĉ) : R̂k = 1
2
εkijΓ̂i ? Γ̂j, Ŝk = 1

2
Γ̂k ? Γ̂4,

Â(3.1) : P̂µ,

k = 1, 2, 3, 4, 5, 6, µ = 1, 2, 3, 4.

(57)

The verification by the above isogenerators of isocommutation rules
(33)-(35) is an instructive exercise for the interested reader. The proof
that the Dirac-Santilli isoequations (I-88) transform isocovariantly under
P̂0(3.1) is equally instructive.

2.5.12. Galilean isosymmetries.
As it is well known, the Galileo symmetry G(3.1) characterizes the non-
relativistic motion of point particles in vacuum, with consequential ab-
sence of resistive or non-potential forces (see the vertical line of Figure 8).

The isotopies of the Galileo symmetry are intended to characterize the
non-relativistic motion of extended particles within physical media, by
therefore experiencing resistive non-potential forces (see the wiggly line
of Figure 8).

The resulting infinite family of isosymmteries Ĝ(3.1) are here called
Galilean isosymmetries to stress the preservation of the basic axioms of the
Galileo symmetry and the mere construction of the broadest possible real-
izations permitted by isomathematics.

The Lie-isotopic lifting of the Galileo symmetry were introduced by
Santilli in the 1978 paper [12] as a particular case of the covering Lie-
Admissible symmetries, also called genosymmetries, which are intended fo
characterize the time rate of variation of physical quantities.

The first direct study of Galilean isosymmetries was done in Section
5.3, pages 225 on, of the 1981 monograph [26] formulated over conven-
tional fields. These isotopies were then systematically studies and up-
graded in the two 1991 volumes [27] [28]. The formulation of Galilean
isosymmetries with the full use of isomathemaics was done in the 1995
monographs [29] [30] with a final study presented in Ref. [32].

The above studies attracted the attention of Abdus Salam, founder and
president of the International Center for Theoretical Physics (ICTP), Trieste,
Italy, who invited Santilli in 1991 to deliver at his Center a series of lectures
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Figure 8: This figure presents a conceptual rendering of the free fall of point-masses
in vacuum studied by Galileo (represented with a straight line), and the free fall of ex-
tended masses experiencing resistive forces from our atmosphere studied by Santilli (rep-
resented with a wiggling line) [26] [30] [37]. It is symptomatic to note that the achieve-
ment of the symmetry for extended masses required the construction of a covering of the
mathematics used for the point masses with particular reference to the generalization of
Newton-Leibnitz differential calculus, from its historical formulation for isolated point, to
a covering formulation for volumes [21].

in the isotopies of the Galileo symmetry and relativity, said invitation be-
ing apparently the last by Salam prior to his death.

During his visit at the ICTP, Santilli wrote papers [65] through [71]. The
notes from Santilli’s lectures were collected by A. K. Aringazin, A. Jannus-
sis, F. Lopez, M. Nishioka and B. Vel-janosky and published in volume [37]
of 1992.

This work is primarily intended for relativistic isosymmetries. Addi-
tionally, all primary applications require relativistic treatments. Therefore,
we regret to be unable to review Galilean isosymmetries to prevent a pro-
hibitive length.

Nevertheless, the reader should be aware that an introductory knowl-
edge of the Galilean isosymmetries is suggested, e.g., from the reading of
the ICTP papers [65] to [71].

3. APPARENT PROOFS OF THE EPR ARGUMENT
3.1. Foreword.
As it is well known, the conventional Pauli matrices σk, k = 1, 2, 3, are the
fundamental (also called adjoint), irreducible unitary representation of the
SU(2)-spin symmetry and play a crucial role for the objections against the
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EPR argument [2] - [6] .
In this section, we review the isotopic “completion’” of Pauli’s matrices

into isomatrices
Σ̂k = σ̂kÎ (58)

which constitute the isofundamental, isoirreducible, isounitary isorepre-
sentation of the Lie-Santilli ŜU(2) isosymmetry and play a crucial role
in the apparent proof of the EPR argument for extended particles within
physical media studied later on in this section.

By recalling that the SU(2) symmetry characterizes the spin of point-
particles in vacuum, the “completed ŜU(2) isosymmetry is intended to
characterize the spin of extended particles within hyperdense media called
hadronic spin, such as the spin of an electron in the core of a star.

The isotopic “completion” of Pauli’s matrices was introduced by San-
tilli in 1993 while visiting the Joint Institute for Nuclear Research, Dubna,
Russia [58]. Said “completion” was presented systematically in Refs. [29]
[30], used for the apparent proofs of the EPR argument [10] [11], and they
are nowadays known as the Pauli-Santilli isomatrices [45].

In particular, the preceding studies have shown that, unlike the case for
the SU(2) symmetry, the isotopic ŜU(2) isosymmetry admits an explicit
and concrete realization of hidden variables λ [3] [4] via realizations of the
isotopic element of type T̂ = Diag.(1.λ, λ) Eq. (3).

In this section, we shall review the construction of ŜU(2) isosymmetry
and of Pauli-Santilli isomatrices of regular and irregular type with hid-
den variables. We shall then use the methods acquired in this and in the
preceding paper [9], for the proof that interior dynamical systems represented
via isomathematics and isomechanics appear to admit identical classical counter-
parts [10] (Section 3.7), and to progressively approach the classical EPR deter-
minism [1] in the structure of hadrons, nuclei and stars, while achieving the EPR
determinism in the interior of gravitational collapse [11] (Section 3.8).

A first understanding of this section requires a knowledge of the Lie-
Santilli isotheory (Section I-2.7) [26] [30] [38] [46] [47] [49]. A technical
understanding of this section requires a technical knowledge of hadronic
mechanics [29]- [31].

3.2. Pauli matrices.
As it is well known (see, e.g., Ref. [72]), the carrier space of the two-
dimensional group of special unitary transformations SU(2) is the two-
dimensional complex Euclidean spaceE(z, δ, I) with coordinates z = (z1, z2),
metric δ = Diag.(1, 1) and unit I = Diag/(1, 1).

The two-dimensional, fundamental (also called adjoint), irreducible,
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unitary representation of the special unitary Lie algebra su(2) of the SU(2)-
spin symmetry is given by the celebrated Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i1
i1 0

)
, σ3 =

(
1 0
0 −1

)
, (59)

with commutations rules

[σi, σj] = σiσj − σjσi = i2εijkσk, (60)

and eigenvalues on a Hilbert space calH over the field of complex num-
bers C with basis |b >

σ2|b >= (σ1σ1 + σ2σ2 + σ3σ3)|b >= 3|b >,
σ3|b >= ±1|b > .

(61)

Among the various properties of Pauli’s matrices, we should recall
their uniqueness in the sense that their expression is invariant under the
class of equivalence admitted by quantum mechanics, that under unitary
transformation.

We should also recall that Pauli’s matrices are also fundamental for
the structure of Dirac’s equation, Eq. (I-9) since they appear in the very
definition of Dirac’s gamma matrices, Eqs. (I-89).

3.3. Regular Pauli-Santilli isomatrices.
By following Ref. [58], the carrier isospace of the two-dimensional Lie-
Santilli isogroup of isospecial isounitary isotransformations ŜU(2) is the
isocomplex iso-Euclidean isospace Ê(ẑ, ∆̂, Î) with isocoordinates

ẑ = zÎ = (z1, z2) = (z1, z2)Î; (62)

isounit and isotopic element

Î =

(
n2

1 0
0 n2

2

)
= 1/T̂ > o, (63)

T̂ =

(
n−2

1 0
0 n−2

2 ;

)
(64)

isometric

∆̂ = δ̂Î = (T̂ ki δki)Î =

(
n−2

1 0
0 n−2

2

)
Î; (65)

100



Studies on the EPR argument, I: Basic methods

positive-definite characteristic quantities nk with unrestricted functional
dependence on the variables for interior dynamical problems

nk = nk(z, z̄, E, µ, α, τ, ψ, ∂ψ, ...) > 0, k = 1, 2; (66)

and basic isoinvariant

ẑi ? ∆̂ij ? ˆ̄zj = (ziδ̂ijzj)Î =

= ( z1z̄1
n2
1

+ z2z̄2
n2
2

)Î .
(67)

By also following Refs. [29] [58], the isogroup of regular, isospecial,
isounitary, isotransformations ŜU(2) leaving invariant isoline element (67),
is characterized by the isotransforms

ẑ′ = Û(θ̂) ? z = Û(θ̂)T̂ ẑ, (68)

verifying the following conditions [30]:
1. Isounitarity

Û(θ̂) ? Û †(θ̂) = Û †(θ̂) ? Û(θ̂) = Î; (69)

2. Isogroup isoaxioms

Û(θ̂1) ? Û(θ̂2) = Û(θ̂1 + θ̂2),

Û(θ̂) ? Û(−θ̂) = Û(0) = Î , k = 1, 2, 3;

(70)

and
3. Isospecial isounitarity

IsoDetÛ(θ̂) = Î , Det(UT̂ ) = 1. (71)

The latter condition essentially restricts the isogroup ŜU(2) to its iso-
connected component ŜU

0
(2) , which is hereon tacitly assumed.

The above conditions imply the local isomorphism

ŜU(2) ≈ SU(2), (72)

and the following explicit realization in terms of isoexponential (I-22)

Û(θ̂) = ΠkUk(θk)Î = Πkê
î?Ĵk?θ̂k = Πk(e

iJkT̂ θk)Î ,

Uk(θk) = eiJkT̂ θk , k = 1, 2, 3,

(73)
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where Ĵk represents the isogenerators of the Lie-Santilli isoalgebra ŝu(2)
verifying the conditions

IsoTrĴk = 0, T r(ĴkT̂ ) = 0, (74)

and the isocommutation rules
[Ĵî,Ĵj] = Ĵi ? Ĵj − Ĵj ? Ĵi =

= ĴiT̂ Ĵj − ĴjT̂ Ĵi = εijkĴk.

(75)

Note that, in accordance with Theorem I-2.7.2, the isorepresentations
here considered are called regular because they can be constructed via non-
unitary transformations of the conventional su(2) algebra, resulting in the
preservation of the conventional structure constants εijk.

However, as we shall see in the next section, the isotopies of the su(2)
algebra imply realizations called irregular that cannot be constructed via
non-unitary representations of su(2) [58], in which case the structure con-
stants εijk are replaced by structure functions with an arbitrary (non-singular)
functional dependence on local variables,

Ĉijk = Cijk(z, z̄, E, ν, α, τ, ψ, ∂ψ, ...)Î . (76)

As one can verify, ŝu(2) admits the following iso-Casimir isoinvariant

Ĵ 2̂ = ΣkĴk ? Ĵk =

= Ĵ1T̂ J1 + Ĵ2T̂ J2 + Ĵ3T̂ J3.

(77)

The maximal set of isocommuting isooperators is then given by Ĵ3 and Ĵ 2̂.
By again following Ref. [58], in order to compute the explicit form of

the isorepresentations of ŝu(2), we introduce the Hilbert-Myung-Santilli
isospace Ĥ[19] over the isofield of isocomplex isonumbers Ĉ [20] with d-
dimensional isobasis |b̂dk > verifying isonormalization (I-75),

< b̂dk| ? |b̂dk >=< b̂dk|T̂ |b̂dk >= Î ,

d = 1, 2, 3, ...N, , k = 1, 2, , 3.

(78)

From the local isomorphism ŝu(2) ≈ su(2) we know that the isoeigen-
value equations have the structure

Ĵk ? |b̂dk >= bdk|b̂dk >,

Ĵ 2̂ ? |b̂dk >= Σkb
d
k(b

d
k +W )|b̂dk >

W = DetT̂ = 1/n2
1n

2
2,

, (79)
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where W = 1 for regular isorepresentation, otherwise W is an arbitrary
function of local quantities to be identified via subsidiary constraints from
the medium in which extended particles are immersed.

The explicit form of the isorepresentations of ŝu(2) is then given by the
simple isotopy of the conventional case [72]

Ĵ± = Ĵ1 ± Ĵ2,

(Ĵ1)ij = i1
2
< b̂dk| ? (Ĵ− − Ĵ+) ? |b̂dk >,

(Ĵ2)ij = i1
2
< b̂dk| ? (Ĵ− + Ĵ+) ? |b̂dk >,

(J3)ij =< b̂dk| ? Ĵ3 ? |b̂dk > .

(80)

By continuing to follow Ref. [58], we now restrict our attention to the
two-dimensional isofundamental (isoadjoint) isorepresentation of ŝu(2) oc-
curring for d = 2, in which case we assume

Ĵk =
1

2
σ̂k, k = 1, 2, 3, (81)

and select the basic isounitary isotransform according to Sections I-2.8 and
I-2.9

UU † = f(W ) > 0, W = Det.Î = n2
1n

2
2, (82)

where f(W ) is a smooth function such that f(1) = 1.
By using the above procedure, we have the following regular Pauli-

Santilli isomatrices first introduced by Santilli in Ref. [58], Eqs. (3.2) (where
the isometric elements are denoted gkk = n−2

k , k − 1, 2,

Σ̂k = σ̂kÎ ,

σ̂1 = (n1n2)

(
0 n−2

1

n−2
2 0

)
, σ̂2 = (n1n2)

(
0 −in−2

1

in−2
2 0

)
,

σ̂3 = (n1n2)

(
n−2

2 0
0 −n−2

1 ,

)
.

(83)

with isocommutation rules

[σ̂î,σ̂j] = i2εijkσ̂k, (84)

in which the ’regular’ character of the isomatrices is established by the
presence of the conventional (constant) structure constants.
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We then have the isoeigenvalues isoequations

σ̂3 ? |b̂2
m >= σ̂3T̂ |b̂2

m >= ± 1
n1n2
|b̂2
m >

σ̂2̂ = (σ1T̂ σ̂1 + σ2T̂ σ̂
+
2 σ3T̂ σ̂3)T̂ |b̂2

m >=

= 3 1
n2
1n

2
2
|b̂2
m >,

(85)

showing that the regular Pauli-Santilli isomatrices preserve the conven-
tional structure constants εijk of Pauli matrices, but exhibit structure (84)
with generalized isoeigenvalues containing two characteristic quantities
n2

1, n
2
2.

It is evident that, under isounimodularity condition (71),

DetT̂ = 1, n1 = 1/n2, (86)

isomatrices (83) reduce to

σ̂1 =

(
0 n−2

1

n−2
2 0

)
, σ̂2 =

(
0 −in−2

1

in−2
2 0

)
,

σ̂3 =

(
n−2

2 0
0 −n−2

1

)
,

(87)

by verifying conventional commutation rules (84) and conventional eigen-
values

σ̂3 ? |b̂2
m >= ±|b̂2

m >

σ̂2̂ ? |b̂2
m >= 3|b̂2

m > .

(88)

In order to search for additional realizations of regular Pauli-Santilli
isomatrices, we now assume the following non-unitary transform

U =

(
n1 0
0 n2

)
= U †, (89)

under which we have the following second realization of regular Pauli-
Santilli isomatrices

σ̂k = UσkU
†,

σ̂1 =

(
0 n1n2

n1n2 0

)
, σ̂2 =

(
0 −in1n2

in1n2 0

)
,

σ̂3 =

(
n2

1 0
0 −n2

2

)
.

(90)
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It is an instructive exercise for the interested reader to verify that the
above isomatrices verify the isocommutation rules (84) and conventional
isoeigenvalue (99), namely, the second realization of the Pauli-Santilli isoma-
trices, Eqs. (83), also admit conventional structure constants and eigenvalues de-
spite the degrees of freedom permitted by the two characteristic quantities n2

1, n
2
2.

We now assume the following non-diagonal realization of the non-
unitary transform

U =

 0 n1

n2 0

 , U † =

(
0 n2

n1 0

)
,

UU † = Î = 1/T̂ > 0,

(91)

which characterizes the following third realization of the regular Pauli-
Santilli isomatrices

σ̂1 =

(
0 n1n2

n1n2 0

)
, σ̂2 =

(
0 −in1n2

in1n2 0

)
,

σ̂3 =

(
−n2

1 0
0 n2

2

)
.

(92)

It is easy to see that the above third realization of the regular Pauli-
Santilli isomatrices also verify conventional commutation rules (84) and
eigenvalues (88).

Note that, while Pauli’s matrices are invariant under unitary trans-
forms, there exist a number of Pauli-Santilli isomatrices each of which is
invariant under isounitary isotransforms (Section I-3.9).

3.4. Irregular Pauli-Santilli isomatrices.
3.4.1. Historical notes. One of the most fundamental, yet unresolved pro-
cesses in nature is the synthesis of the neutron from the hydrogen in the
core of stars, which is a pre-requisite for the production of light and, there-
fore, for the existence of life itself.

In this section, we would like to outline the main historical aspects on
the synthesis of the neutron and identify the open problems because truly
fundamental for the construction of the new mathematics needed for their
solution.

Recall that stars initiate their life as an aggregate of hydrogen and grow
via the accretion of hydrogen existing in interstellar spaces.

In 1910, H. Rutherford [73] conjectured that, when the pressure and
temperature at the core of the star reaches certain values, the hydrogen
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atom is “compressed” into a neutral particle n which is called the neutron
according to the reaction (see Section I-4)

e− + p+ → n. (93)

Rutherford hypothesis was experimentally confirmed by J. Chadwick
in 1932 [74], and the neutron became part of scientific history.

Following the experimental verification that the neutron has the same
spin 1/2 of the electron and of the proton, in an attempt at maintaining
the conservation of the angular momentum, E. Fermi [75] suggested that
the synthesis of the neutron occurs with the emission of a hypothetical,
massless and chargeless particle ν with spin 1/2 which he called the neu-
trino (meaning “little neutron” in Italian), according to the reaction widely
accepted by the scientific communioty for about one century

e− + p+ → n+ ν. (94)

After joining Harvard University in September 1977 under DOE sup-
port, R. M. Santilli [15]-[17] noted that, despite the salvaging of space-time
symmetries and related conservation laws, reaction (93) is not compatible
with quantum mechanical laws because the rest energy of the neutron En
is 0.782 MeV bigger than the sum of the rest energies of the proton Ep and
of the electron Ee,

Ep = 938.272 MeV, Ee = 0.511 MeV, En = 939.565 MeV,

En − (Ep + Ee) = 0.782 MeV > 0.
(95)

Therefore, Santilli presented a number of arguments according to which
the synthesis of the neutron is clear evidence of Einstein’s view on the lack
of “completion” of quantum mechanics (see Einstein’s name in the title
of the 1981 paper [17] released from the Department of Mathematics of
Harvard University). Subsequently, Santilli achieved in Ref. [76] (see the
independent review [? ] the non-relativistic representation of all charac-
teristics of the neutron in its synthesis from the hydrogen representation,
with a relativistic representation subsequently achieved in Ref. [62] (see
the independent review in ref. [45]).

The technically most difficult problem of the above representation was
the identification of the spin-orbit coupling for the electron when totally
immersed inside the proton which was first solved non-relativistically in
Ref. [76] and relativistically in Ref. [62] (see the review in Ref. [30], Chap-
ter 6 in particular).
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Figure 9: To illustrate some of isosymmetries for interior systems, in the left we show the
conversion of linear momentum into angular momentum for the case of photons causing
the rotation of a small propeller in a vacuum chamber. In the right, we show the opposite
conversion of angular momentum into linear momentum, as it is the case for the sling
shot. The left view illustrates that the neutrino hypothesis is not necessary for the syn-
thesis of the neutron when particles are represented as being extended. The right view
illustrates that the emission of an antineutrino is not necessary in the neutron decay be-
cause the internal angular momentum of the electron can be converted into its external
linear momentum without any violation of physical laws.

Recall that quantum mechanics has an excellent consistency for bound
states with negative potentials causing a mass defect. Santilli’s first argument
is that a representation of experimental data (95) via quantum mechanics is
impossible because it would require a positive potential capable of produc-
ing a mass excess, which features imply the loss of physical consistency of
Schrödinger equation for bound states (and not for free particles with posi-
tive kinetic energy) because the indicial equation of Schrödinger equation
admits no consistent solutions for positive potential energies, (see Section
I-4).

The inability of Dirac’s and other quantum mechanical equations for
the representation of experimental data (95) then followed.

Various conjectures, aimed at maintaining for the neutron structure the
theory so effective for the hydrogen atom, were proved not to be consis-
tent. For instance, the hypothesis that the missing energy of 0.782 MeV
is provided by the star via a relative energy between the electron and the
proton had to be dismissed because the cross section e− p at 0.782 MeV is
essentially null, thus preventing any fusion between the electron and the
proton.

Similarly, the hypothesis that the missing energy is provided by the
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antineutrino ν̄ via reactions of the type

e− + ν̄ + p+ → n, (96)

had to be equally abandoned because the cross section between neutrinos
or antineutrinos and individual particles is identically null.

As it is well known, the neutrino hypothesis is necessary for the quan-
tum mechanical treatment of synthesis (94), namely, for the point-like char-
acterization of the proton, the electron and the neutron. Ref. [17] indicated
that the neutrino hypothesis cannot any longer be consistently applied
for the neutron synthesis whenever particles are represented as being ex-
tended.

Independently from that, there exist no known conventional possibil-
ity of identifying the energy needed for the creation of the neutrino since
synthesis (94) already misses 0.782 MeV for the synthesis of the neutron.

Another argument of Ref. [17] is that the conservation of the angular
momentum is necessary for the synthesis of bound states with a Keplerian
center under the validity of conventional space-time symmetries, such as
for the synthesis of the hydrogen atom form an electron and a proton.

However, said conservation is no longer necessary for bound states at
short distances without a Keplerian center, since in that case we have the
validity of space-time isosymmetries for which the angular momentum
can be transformed into linear momentum and vice-versa without any vi-
olation of physical laws (see Section 2.2 and Figure 9).

But the neutron has no Keplerian center, with the consequential lack of
applicability of the Lorentz-Poincaré symmetry, and the ensuing lack of
necessary conservation of the angular momentum in favor of alternative
hypotheses.

In view of the above (and other) insufficiencies of the neutrino hypoth-
esis, Santilli suggested in Ref. [78] the introduction in the l.h.s. (rather
than the r.h.s.) of the synthesis of the mass-less, charge-less and spin-less
particle called the etherino and denoted with the symbol a (from the Latin
aether)

p+ + a+ e− → n, (97)

whose scope is to represent the delivery of the missing 0.782 MeV to the
neutron.

An intriguing aspect is that the etherino hypothesis can be shown to be
compatible with the experimental data of the so-called “neutrino experiments,” of
course, under the condition of abandoning point-like abstractions of hadrons and
representing them as they are in the physical reality, i.e., extended, deformable
and hyperdense.
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By recalling that there is no known consistent way of accounting for
the missing 0.782MeV as originating from the star, Ref. [? ] submitted the
hypothesis that the missing energy may originate from the ether as a uni-
versal medium of extremely high energy density for the characterization
and propagation of particles and electromagnetic waves.

However, it should be stressed that the etherino is not intended to be a
particle, but to be an “impulse” representing the mechanism of supplying the
missing 0.782 MeV for the neutron, the origin of the missing energy from the
ether being only one among other possibilities.

In view of the above insufficiencies of quantum mechanics for the syn-
thesis of the neutron, Santilli initiated in Refs. [15] - [17] the search for a
“completion” of quantum mechanics into hadronic mechanics with partic-
ular reference to the “completion”of Lie’s theory at large, and the SU(2)-
spin symmetry in particular, for the characterization of the spin of the elec-
tron when “compressed” inside the hyperdense proton.

It should also be recalled that, during the same period, Santilli con-
ducted a post Ph. D. Seminar Course at the Lyman Laboratory of Physics
of Harvard University with a technical treatment of the insufficiency of
quantum mechanics for the neutron synthesis via the conditions of vari-
ational self-adjointness for the existence of a Lagrangian or a Hamiltonian.
This Seminar Course was eventually published by Springer-Verlag in mono-
graphs [25] [26] whose primary aim is the first known presentation of
the axiom-preserving Lie-Santilli isotheory and the axiom-inducing Lie-
Santilli genotheory.

In fact, possible representations of experimental data (95) for the neu-
tron synthesis violate the conditions of variational self-adjointness, thus
mandating the search for a covering theory.

The subsequent 1995 papers [55] [56] [58] achieved the regular iso-
topies ŜU(2) of the spin symmetry (reviewed in the preceding section).

However, regular isotopies of the SU(2) spin symmetry are insufficient for
the neutron synthesis because it requires alterations (called mutations) of conven-
tional eigenvalues that can be solely represented via irregular isorepresentations.

The irregular isorepresentations of the SU(2)-spin symmetry were iden-
tified, apparently for the first time, by Santilli in the 1990 paper [78] and
used to achieve the non-relativistic representation of all characteristics of
the neutron in its synthesis from the hydrogen.

In the 1995 paper [62], Santilli presented a relativistic study of ŜU(2)
as an isosubalgebra of the irregular isospinorial covering of the Lorentz-
Poincaré symmetry (Section 2.5.11) and used the results to achieve a rela-
tivistic representation of the neutron synthesis.
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The indicated irregular representations of the SU(2)-spin symmetry
were then instrumental for the apparent confirmations of the EPR argu-
ment in Refs.[10] [11] reviewed in this section.

3.4.2. Non-relativistic formulation. The first irregular isotopies of Pauli’s
matrices, today known as irregular Pauli-Santilli isomatrices [45], have been
introduced in Eqs. (2.32) of Ref. [78] via the use of the isorepresentations
of ŜU(2) worked out in the preceding papers [55] [56], and are given by

σ̂1 =

(
0 −n1

n2 0

)
, σ̂2 =

(
0 −in1

in2 0

)
,

σ̂3 = 1
n)1n2

(
n2

1 0
0 −n2

2

)
,

(98)

with irregular isocommutation rules

[σ̂î,σ̂j] = 2i
1

n1n2

εijkσ̂k, i, j, k,= 1, 2, 3 (99)

and isoeigenvalues

σ̂3 ? |û >= ± 1
n1n2
|û >,

σ̂2̂ ? |û >= 1
n1n2

( 1
n1n2

+ 2)|û > .

(100)

It is easy to see that, when the hyperdense medium surrounding the
immersed particle is homogeneous and isotropic, the characteristics quan-
tities can be normalized to the values n1 = n2 = n3 = 1, in which case
isoeigenvalues (100) are conventional. We therefore have the following

LEMMA 3.1: Irregular isorepresentations of the Lie-Santilli isosymmetry ŝu(2)
represent the inhomogeneity and anisotropy of media in which extended particles
are immersed.

Among a number of additional irregular Pauli-Santilli isomatrices with
isotopic element T̂ in Eq. (64) we quote Eqs. (3.2) of Ref. [10]

σ̂1 = n1n2

(
0 n−2

1

n−2
2 0

)
, σ̂2 = n1n2

(
0 −in−2

1

in−2
2 0

)
,

σ̂3 = n1n2

(
n−2

2 0
0 −n−2

1

)
,

(101)
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with irregular isocommutation rules

[σ̂î,σ̂j] = 2i
1

n1n2

σ̂k, (102)

and isoeigenvalues
σ̂3 ? |û >= ± 1

n1n2
|û >,

σ̂2̂ ? |û >= 3 1
n2
1n

2
2
|û >,

(103)

The above isorepresentation appears to be significant when the medium
causes a proportional alteration/mutation of both the third component as
well as the total value of the spin of a particle having the value 1/2 in
vacuum.

Another example of irregular Pauli-Santilli isomatrices is given by Eqs.
(3.7) of Ref. [10]

σ̂1 =

(
0 n2

n1 0

)
, σ̂2 =

(
0 −in2

in1 0

)
,

σ̂3 =

(
n2

1

0 −n2
2

)
,

(104)

with irregular isocommutation rules

[σ̂1̂,σ̂2] = 2i 1
n2
1n

2
2
σ̂3, [σ̂2̂,σ̂3] = 2iσ̂1,

[σ̂3̂,σ̂1] = 2iσ̂2,

(105)

and mutated isoeigenvalues

σ̂3 ? |û >= ±|û >,

σ̂2̂ ? |û >= 2
n2
1n

2
2
|û > .

(106)

The above isorepresentation may be useful when the anisotropy and
inhomogeneity of the medium maintain the spin value 1/2 along the third
axis, yet they are such to deform the remaining components.

Additional example of irregular Pauli-Santilli isomatrices are available
from Refs. [10] and [58], and can be readily constructed by interested read-
ers.
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3.4.3. Relativistic formulation. Consider the iso-Minkowskian isospace
M̂(x̂, Ω̄, Î) with isometric

Ω̂ = η̂Î , η̄ = T̂ η,

T̂ = Diag.( 1
m2

1
, 1
m2

2
, 1
m2

3
, 1
m2

4
),

mµ = mµ(r, p, E, ν, α, τ, π, ψ, ...) > 0. µ = 1, 2, 3, 4,

(107)

where the new characteristic quantities mµ have been introduced to avoid
confusion with the previously used symbols nµ.

The relativistic formulation of the irregular isorepresentation of ŜU(2)
were derived, apparently for the first time, in Eqs. (6.4c)-(6.4d) of Ref. [62],
and can be written

Jk =
1

2
εkij γ̂i ? γj, (108)

where γ̂ are the regular Dirac-Santilli isomatrices (I-89), i.e.,

γ̂k = 1
mk

(
0 σ̂k
−σ̂k 0

)
,

γ̂4 = i
m4

(
I2×2 0

0 −I2×2

)
,

(109)

and σ̂k are the regular Pauli-Santilli isomatrices.
The irregular character of isorepresentation (108) is established by the

presence of structure functions in the isocommutation rules, Eqs, (6.4c) of
Ref. [62],

[Jî,Jj] = εijk
1

m2
k

Jk, (110)

and in the irregular isoeigenvalues

J3 ? |ψ̂ >= ±1
2

1
m1m2

|ψ̂ >,

J 2̂ ? |ψ̂ >= 1
4
( 1
m1m2

+ 1
m2m3

+ 1
m3m1

)|ψ̂ >,
(111)

that, as shown in Ref. [62], permit a relativistic representation of the spin
of the neutron in its synthesis from the hydrogen.

Again one should note that, when the medium is homogeneous and
isotropic, isoeigenvalues (101) are conventional.
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Note that the assumption of mutated spin for an extended particle
within a hyperdense medium implies the inapplicability (rather than the vi-
olation) of the Fermi-Dirac statistics, Pauli’s exclusion principle and other quan-
tum mechanical laws with the understanding that said mutations are inter-
nal, thus solely testable under external strong interactions, as indicated be-
ginning with the title of Harvard’s 1978 paper [15].

3.5. Isotopies of hadronic spin and angular momentum.
3.5.1. Historical notes. An electron orbiting in vacuum around the pro-
ton in the hydrogen atom experiences no resistive forces, thus verifying
known symmetries and conservation laws.

When the same electron has been “compressed” inside the proton ac-
cording to Rutherford [73], Santilli [78] argued that the sole possible an-
gular moment is that permitted by constraints exercised on the electron by
the internal medium.

Since the electron is about 2, 000 times lighter than the proton, the most
stable configuration is that for which the electron is “constrained” to orbit with
a value of the angular momentum equal to the proton spin, since any different
configuration would imply big resistive forces (Figure 9).

Needless to say, fractional angular momenta are anathema for the quan-
tum mechanical description of point-particles in vacuum.

However, the angular momentum of extended particles immersed within
hyperdense hadronic media can acquire values other than integers, de-
pending on the local physical conditions of the medium surrounding the
particle, such as pressure, density, anisotropy, inhomogeneity, etc.

The first known quantitative study of constrained angular momenta of ex-
tended particles within hyperdense hadronic media was done at the non-
relativistic level by Santilli in Ref. [78] of 1990 following the preceding
isotopies of the rotational symmetry, Refs. [55] [56]. The study was then
extended to the relativistic level in Ref. [62] of 1990.

These studies are crucial for quantitative representations of the synthe-
sis of hadrons providing apparent verifications of the EPR argument, and
can be summarized as follows.

3.5.2. Non-relativistic representation. Recall the central assumption of isosym-
metries according to which conventional generators are preserved (be-
cause representing conventional total conservation laws), and only their
product is lifted into the isotopic form (1) (to represent the extended char-
acter of the particles and their non-Hamiltonian interactions).

Hence, the definition of the isoangular isomomentum, also called hadronic
angular momentum, on an iso-Euclidean isospace is the same as that of
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quantum mechanics

Lk = εijkr̂i ? p̂j = εijkripj, (112)

although it is defined on a Hilbert-Myung-Santilli isospace Ĥwith isostates
|ψ̂ > on an isocomplex isofield Ĉ, with isolinear isomomentum Eqs, (I-79),
and isocommutation rules are then given by Eqs. (I-81).

It is then easy to verify the following isocommutation rules for the
hadronic angular isomomentum, Eqs. (2.22b) [78]

[Lî,Lj] = iÎεijkLk, (113)

where, as one can see, the characteristics of the medium, represented by
the isounit Î , enter directly in the isocommutation rules.

The use of the isosperical isoharmonic isofunctions (see page 240 of Ref.
[30] for details)

Ŷ`m(θ̂, φ̂) = UY (θ, φ)U † = T̂−1Y`m(θ, φ),

UU † = Î = 1/T̂ 6= I,

(114)

where Y`m(θ, φ are the conventional spherical harmonic functions, yields
the following isoeigenvalues, Eqs. (2.25), Ref. [78],

L3 ? Ŷ`m(θ̂, φ̂) = ÎmŶ`m(θ̂, φ̂),

L2̂ ? Ŷ`m(θ̂, φ̂) = Î`(Î`+ 1)Ŷ`m(θ̂, φ̂),

m = `, `− 1, ....,−`, m = 1, 2, 3, ...

(115)

where one can see again the mutation of the eigenvalues caused by the
surrounding medium.

Applications to particle physics then require specific realizations of the
isounit Î , such as the simple assumption of expressions (4) used in Ref.
[78]

ρ = |Î| =≈ |eγ|, (116)

where ρ is a function of all possible or otherwise needed local variables of
the medium.

3.5.3. Isotopies of non-relativistic spin-orbit coupling. As one can see, isoeigen-
values (115) do not allow a representation of the constrained hadronic an-
gular momentum of the electron when compressed inside the proton (Fig-
ure 9).
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In view of this insufficiency, Santilli conducted in Ref. [76] (see Also
Ref. [30], Chapter 6) a study of the eigenvalues of the combined spin and
angular momentum of the electron in the indicated interior conditions.

We consider then the total hadronic momentum

Jtot = L`⊗̂Js, (117)

with corresponding basis |Ŷ ⊗̂û > and isoexpectation values, Eqs. (2.34),
Ref. [78],

J3,tot|Ŷ ⊗̂û >= (ρm(`)± m(s)
n1n2

)|Ŷ ⊗̂û >

J 2̂
tot ? |Ŷ ⊗̂û >= (ρ`± s

n1n2
)(ρ`± s

n1n2
+ 1)|Ŷ ⊗̂û >

` = 0, 1, 2, 3, ... s = 0, 1
2
1, 3

2
, ...,

m(`) = `, `− 1, ...,−`, m(s) = s, s− 1, ...,−s.

(118)

Following a laborious journey initiated in 1977, isoeigenvalues (118)
finally permitted Santilli to achieve the desired solution for ` = 1 and
s = 1

2
, Eq. (2.36), Ref. [78],

ρ =
1

2

1

n1n2

, (119)

for which the total hadronic angular momentum of the electron in the synthesis
of the neutron is identically null, Jtot = 0, and the spin of the neutron coincides
with that of the proton.

More detailed studies pertaining to electric and magnetic dipoles ex-
cluded the alternative J = 1 of eigenvalues (118), as well as total hadronic
angular momenta of the electron other than zero.

The preceding studies permitted a quantitative non-relativistic repre-
sentation of the spin of the neutron in its synthesis from the hydrogen
atom. A representation of the remaining characteristics of the neutron
(mass, radius, charge, dipole moments, etc.) is reviewed in Section 4.5.

3.5.4. Isotopies of relativistic spin-orbit couplings. The hadronic spin Ŝ =

SÎ is a realization of the ŜU(2) isosubalgebra of P̂(3.1) with generators
(57), while the hadronic angular momentum L̂ = LÎ is a realization of the
isorotational ŜO(3) isosubalgebra. Their relativistic formulation on iso-
Minkowskian isospace (107) has been first derived in Eqs. (6.4a) (6.4b),
Ref. [62] and are given by

Sk = 2εkij γ̂i ? γ̂j,

Lk = εkijri ? pj,
(120)
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where γ̂k are the Dirac-Santilli isomatrices.
We then have the irregularisocommutation rules

[Sî,Sj] = εkijm
2
kŜk,

[Lî,Lj] = εijkm
2
kLk,

(121)

and isoeigenvalues, Eqs, (6.4d) Ref. [62]

Ŝ3 ? |ψ̂ >= ± 1
m1m2

|ψ̂ >,

Ŝ 2̂ ? |ψ̂ >= (m−2
1 m−2

2 +m−2
2 m−2

3 +m−2
3 m−2

1 )|ψ̂ >,

L̂3 ? |ψ̂ >= ±m1m2|ψ̂ >,

L̂2̂ ? |ψ̂ >= (m2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1)|ψ̂ > .

(122)

The most salient difference between relativistic isoeigenvalues (122)
and their non-relativistic counterparts (155) is that the former admit frac-
tional hadronic angular momenta while the latter do not.

In fact, for the following values admitted by a homogeneous and isotropic
medium [62]

m1 = m2 = m3 =
1√
2
, (123)

isoeigenvalues (122) become

Ŝ3 ? |ψ̂ >= ±1
2
|ψ̂ >,

Ŝ 2̂ ? |ψ̂ >= 3
4
|ψ̂ >,

L̂3 ? |ψ̂ >= ±1
2
|ψ̂ >,

L̂2̂ ? |ψ̂ >= 3
4
|ψ̂ > .

(124)

Consequently, isoeigenvalues (122) permit a quantitative representation of
the hadronic angular momentum of the electron as being constrained to be equal
to the proton spin [61] [62] (Figure zzzz).

In this case too, the total hadronic angular momentum of the electron
is null because the only stable hadronic spin-orbit coupling is in singlet,
and the spin of the electron can be assumed in first good approximation
not to be mutated since the electron is about 2, 000-times lighter than the
proton.

116



Studies on the EPR argument, I: Basic methods

Hadronic spins, hadronic angular momenta and hadronic spin-orbit
couplings were studied in detail Chapter 6 of Ref. [30] resulting in Lemma
6.12.1 here reproduced without proof:

LEMMA 3.2: When immersed within hadrons or nuclei with spin 1/2, an ele-
mentary particle having spin 1/2 in vacuum can only have a null total hadronic
angular momentum.

As we shall see in Section 4.6, the above configuration of the synthesis
of the neutron from the hydrogen is an apparent verification of the EPR
argument.

3.6. Realization of hidden variables.
As recalled in Section 1.1, the conventional quantum mechanical realiza-
tion of the Lie symmetry SU(2) does not allow a consistent representation
of hidden variables λ [3] [4].

It is easy to see that, despite the local isomorphism ŜU(2) ≈ SU(2), the
Lie-Santilli isosymmetry ŜU(2) does indeed allow explicit and concrete
realizations of hidden variables thanks to the degree of freedom permitted
by the isotopic element (1) in the structure of the Lie-Santilli isoproduct (2)
with realizations of the isotopic element of type (3).

In this section, we review the explicit and concrete realization of regular
hidden variables, namely, realizations that can be derived via non-unitary
transforms of the Lie algebra su(2), and then review irregular hidden vari-
ables, namely, realizations that do not admit such a simple derivation.

Regular and irregular realizations of hidden variables have been first
identified by Santilli in Ref. [58] of 1993, and then used for the proof of the
EPR argument [10] reviewed in Section 3.7.

Realizations of regular hidden variables are easily provided by Pauli-
Santilli isomatrices (83) with the identifications

n2
1 = λ1, n

2
2 = λ2, (125)

yielding the desired realization, Eqs. (3.9), Ref. [58],

σ̂1 = (λ1λ2)

(
0 λ−1

1

λ−1
2 0

)
, σ̂2 = (λ1λ2)

(
0 −iλ−1

1

iλ−1
2 0

)
,

σ̂3 = (λ1λ2)

(
λ−1

2 0
0 −λ−1

1

) (126)

verifying isocommutation rules

[σ̂î,σ̂j] = iεijkσ̂k, (127)
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and isoeigenvalue isoequations

σ̂3 ? |b̂ >= ±(λ1λ2)|b̂ >

σ̂2̂ = 3(λ1λ2)2|b̂ > .

(128)

We consider now the particular case of Eq. (3), i.e.,

Det.T̂ = 1, n2
1 = 1/n2

2 = λ, (129)

derivable via the basic non-unitary transformation

T̂ = (UU †)−1 =

(
λ−1 0
0 λ

)
. (130)

In this case, isomatrices (83) become (Eqs. (3.9) of [58])

σ̂1(λ) =

(
0 λ−1

λ 0

)
, σ̂2(λ) =

(
0 −iλ−1

iλ 0

)
,

σ̂3(λ) =

(
λ 0
0 −λ−1

)
.

(131)

It is an instructive exercise for the interested reader to verify that the
above realization of the regular Pauli-Santilli isomatrices verifies isocom-
mutation rules with the same stricture constants of the SU(2) algebra

[σ̂i(λ)̂,σ̂j(λ)] = i2εijkσ̂k(λ), (132)

and admit conventional eigenvalues

σ̂3(λ) ? |b̂ >= ±|b̂ >

σ̂(λ)2̂ = 3|b̂ > .

(133)

Consequently, we have the following property [58]:

LEMMA 3.3. Regular Pauli-Santilli isomatrices provide an explicit and concrete
realization of regular hidden variables directly in the spin 1/2 algebra.

Note that, besides being positive-definite, hidden variables have an un-
restricted functional dependence on all needed local variables, Eqs. (66).

An example of irregular hidden variables is provided by the ŜU(2)
component of the spinorial covering of the Lorentz-Poincaré-Santilli isosym-
metry.
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To illustrate this realization, introduce three additional hidden vari-
ables for the characterization of isospace (107)

mµ = λµ, µ = 1, 2, 3, 4. (134)

Realization (108) then implies the following irregular Dirac-Santilli isoma-
trices

γ̂k(λ) = 1
γk

(
0 σ̂k(λ)
−σ̂k 0

)
,

γ̂4 = i
m4

(
I2×2 0

0 −I2×2

)
,

(135)

where σ̂k are the regular or irregular Pauli-Santilli isomatrices, with isocom-
mutation rules

[Si(λ)̂,Sj(λ)] = εijk
1

λk
Sk, (136)

and isoeigenvalues

S3 ? |ψ̂ >= ±1
2

1√
λ1λ2
|ψ̂ >,

S 2̂ ? |ψ̂ >= 1
4
( 1√

λ1λ2
+ 1√

λ2λ3
+ 1√

λ3λ1
)|ψ̂ > .

(137)

Consequently, we have the following property [62]

LEMMA 3.4: The axioms of Dirac’s equation admit up to five generally different,
regular or irregular hidden variables.

Additional realizations of irregular hidden variables can be found in
Eqs. (3.11) of Ref. [58] or can be easily derived from the preceding realiza-
tion of the Pauli-Santilli isomatrices.

3.7. Apparent admission of classical counterparts.
As it is well known, Bell’s inequality [3] [4], von Neumann’s theorem [5],
and the theory of local realism at large (see review [6] with a comprehen-
sive literature) are generally assumed to be evidence of the impossibility
of “completing” quantum mechanics into a broader theory, with ensuing
rejection of the EPR argument [1].

Following decades of preparatory works reviewed in Paper I [9] and in
the preceding sections of this paper, Santilli proved in Ref. [10] of 1998 (see
also the detailed study in Ref. [30], particularly Chapter 4 and Appendix
4C, page 166) that:
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1) Bell’s inequality, von Neumann’s theorem and related studies are
indeed valid, but under the tacit assumption of representing particles as
being point-like, with ensuing sole admission of linear, local and potential
interactions (exterior dynamical problems).

2) Bell’s inequality, von Neumann’s theorem and related studies are in-
applicable (rather than being violated) for extended particles within phys-
ical media, due to the presence of additional non-liner, non-local and non-
potential interactions (interior dynamical systems).

3) The latter systems represented with the axiom-preserving “comple-
tion” of 20th century applied mathematics into isomathematics and the en-
suing “completion” of quantum mechanics into hadronic mechanics [29]-
[31] verify Statement 2 and admit well defined classical counterparts.

To review the preceding advances, consider two quantum mechanical
particles with spin 1/2 denoted 1 and 2 which verify the SU(2) spin sym-
metry.

Assume that, as a result of some interaction, the two particles have
antiparallel spins represented in the Hilbert spaceH over the field of com-
plex numbers C. The total state in ˆcalH is then given by

|S1−2 >=
1√
2

(|S1↑ > ×|S2↓ > −|S1↓ > ×|S2↑ >), (138)

with conventional l normalization

< S1−2|S1−2 >= 1, (139)

where × is the conventional associative product.
Let a1, b1 and a2, b2 be unit vectors along the z-axis of a conventional

Euclidean space E(r, δ, I) for particle 1 and 2, respectively. Introduce the
quantum mechanical probability

P (a1, b1) =< S1−2|(σ1 ⊗ a1)× (σ2 ⊗ b1)|S1−2 >= −a1 ⊗ b1, (140)

where ⊗ is the conventional scalar product.
Then, Bell’s inequality can be written [4] (see Ref. [6] for numerous

equivalent formulations)

DQM
Bell = Max|P (a1, b1)− P (a1, b2) + P (a2, b1) + P (a2, b2)| ≤ 2, (141)

and implies the following property:

LEMMA 3.5: Particles in vacuum verifying the Lie symmetry SU(2) admit no
classical counterparts.
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PROOF: The classical counterpart of Bell’s inequality is given by

DClassical
Max = Max|a1 ⊗ b1 − a1 ⊗ b2|+ |a2 ⊗ b1 + a2 ⊗ b2| = 2

√
2. (142)

But the quantum mechanical value of DQM
Bell is always smaller than its

classical counterpart DClassical
Max ,

DQM
Bell < DClassical

Max , (143)

by therefore establishing the impossibility for an SU(2)-invariant system
to admit identical classical images. Q. E. D.

Santilli [10] has shown that inequality (141) is inapplicable for the same
particles when they are in interior dynamical conditions, e.g., when they
are in the core of a star, or at the limit, when they are in the interior of a
gravitational collapse.

Considers two extended particles also denoted 1 and 2. Suppose that
said particles verify the regular ŜU(2) isosymmetry with spin 1/2 (Section
3.3), thus implying the elaboration via isomathematics (Section I-3) and
the verification of the isotopic branch of hadronic mechanics (Section I-4).

Suppose that the two extended particles with spin 1/2 are character-
ized by the following isotopic elements:

Particle 1 : T̂1 = Diag(λ1, 1/λ1),

Particle 2 : T̂2 = Diag(λ2, 1/λ2),

(144)

with realization (83) of the Pauli-Santilli isomatrices.
Suppose that, due to preceding interactions, the two extended particles

are in single overlapping/entanglement thus having opposite spins.
Let Î1 and Î2 be the isounits for particles 1 and 2, respectively. The

systems of the assumed two isoparticles is then characterized by the total
isounit

Îtot = Î1 × Î2 =
1

T̂tot
=

1

T̂1 × T̂2

. (145)

In this case, the total isostate on the Hilbert-Myung-Santilli isospace Ĥ
[19] over the isofield of isocomplex isonumbers ˆcalC [20] is given by

|Ŝ1−2 >=
1√
2

(|Ŝ1↑ > ×̂|Ŝ2↓ > −|Ŝ1↓ > ×|Ŝ2↑ >). (146)

The lack of validity of inequality (141) for irregular isorepresentations
of ŜU(2) is evident (e.g., because of the anomalous spin isoeigenvalues)
and, as such, it is ignored.
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A significant aspect of Ref. [10] is the proof of the inapplicability of
inequality (141), not only for regular isorepresentation of ŜU(2), but also
when such isorepresentations are isounimodular, Eqs. (144).

Let a1, b1, a2, b2 be unit vectors along the z-axis of an iso-Euclidean isospace.
Introduce the isoprobability (Eq. (32.39), page 99, Ref. [30])

P̂ (a, b) =< Ŝ1−2| ? (Σ̂1⊗̂1a)× (Σ̂2⊗̂2b)|Ŝ1−2 > Îtot =

=< Ŝ1−2| ? (σ̂1 ⊗ a)× (σ̂2 ⊗ b)|Ŝ1−2 > Îtot,

(147)

with isonormalization (here referred to individual diagonal elements of
isotopic elements and isounits)

< Ŝ1−2| ? |Ŝ1−2 >=< Ŝ1−2|T̂tot|Ŝ1−2 >= Îtot (148)

where: ? is the total isoproduct; ⊗̂k, k = 1, 2, is the isoscalar isoproduct;
and we have used simplifications of the type

Σ̂1⊗̂1a = (σ̂1Î1)(T̂1⊗)a = σ̂1 ⊗ a. (149)

An isotopy of the conventional case yields the following isobasis, Eq.
(6.5) of Ref. [10],

|S1−2 >=
1

2

{(
λ
−1/2
1

0

)(
o

λ
1/2
2

)
−
(

0

λ
1/2
2

)(
λ
−1/2
1

0

)}
. (150)

The appropriate use of products and isoproducts then yield expression
(5.6) Ref. [10], i.e.,

< Ŝ1−2|T̂tot(σ̂1 ⊗1 a)× (σ̂2 ⊗2 b)T̂tot|Ŝ1−2 >=

= −axbx − ayby − 1
2
(λ1λ

−1
2 + λ−1

1 λ2)azbz.
(151)

The continuation of the isotopy of the conventional case, yields the
main result, Eq. (5.8) of Ref. [10], which provides the following isotopic
“completion” of Bell’s inequality,

D̂HM
Max = DHM

MaxÎtot =

Max|P̂ (a1, b1)− P̂ (a1, b2) + P̂ (a2, b1) + P̂ (a2, b2)| =

= [1
2
(λ1λ

−1
2 + λ−1

1 λ2)DQM
Bell Îtot,

(152)
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with consequential:

LEMMA 3.6. Extended particles within physical media that are invariant under
the Lie-Santilli isosymmetry ŜU(2) admit identical classical counterparts.

PROOF: Isoinequality (141) establishes the lack of universal validity of
Bell’s inequality (128) because the factor 1

2
(λ1λ

−1
2 + λ−1

1 λ2) can have val-
ues bigger than one, thus implying

DHM
Max ≥ DQM

Bll . (153)

Consider then a classical iso-Euclidean isospace Ê(r̂, δ̂, Î) representing
motion of classical extended particles 1 and 2 within physical media [30]
with isometric elements

δ̂11 = 1, δ̂22 = 1, δ̂33 =
1

2
(λ1λ

−1
2 + λ−1

1 λ2) = 2, (154)

in which case
DHM
Max ≡ htDClassical

Max , (155)

by therefore establishing that systems of extended particles within phys-
ical media verifying the ŜU(2) isosymmetry admits an identical classical
counterpart along the EPR argument. Q.E.D.

It is an instructive exercise for the interested reader to prove that the
above lemma also holds for different isorenormalizations, e.g., Eqs. (171)
of next section, with the understanding that different isorenormalizations
imply different isobasis and different hidden variable terms in Eqs. (151).

Note the crucial role of hidden variables for the proof of Lemma 3.6.
It is an instructive exercise for interested readers to prove that Lemma 3.6
holds for any other regular, isounimodular isorepresentation of the iso-
topic ŜU(2) symmetry in terms of hidden variables presented in Section
3.3.

The proof of the lack of applicability of von Neumann’s theorem [5]
for extended particles in interior conditions is elementary. Recall that von
Neumann’s theorem is based on the uniqueness of the eigenvalues E of a
Hermitean operator H, H|ψ >= E|ψ > under unitary transformation on
H,

UH|ψ > U † = UE|ψ > U † = EU |ψ > U †, UU † = U †U = I, (156)

under the tacit assumption of point particles in vacuum.
By contrast, when the same particles is in interior conditions, it is sub-

jected to an infinite number of different physical different interactions with
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the medium represented by the isotopic element T̂ with ensuing isoeigen-
value equation (Section I-4), [9],

abel1H ? |ψ̂T̂ r >= HT |ψ̂T̂ >= ET̂ |p̂siT̂ >, (157)

thus establishing that a given quantum mechanical operator H represent-
ing the energy of an extended particle in interior conditions has an infinite
number of generally different isoeigenvalues ET̂ depending on the infinite
number of different interior conditions.

Note that, for each given T̂ the isoeigenvalue ET̂ is invariant under
isounitary isotransformations (Section I-3-9).

3.8. Apparent admission of classical determinism.
Consider a point-like particle in empty space represented in the 3-dimensi-
onal Euclidean space E(r, δ, I), where r represents coordinates, δ = Diag.-
(1, 1, 1) represents the Euclidean metric and I = Diag.(1, 1, 1, ) represents
the space unit.

Let the operator representation of said point-like particle be done in a
Hilbert space H over the field of complex numbers C with states ψ(r) and
familiar normalization

< ψ(r)| |ψ(r) >=

∫ +∞

−∞
ψ(r)†ψ(r)dr = 1. (158)

As it is well known, the primary objections against the EPR argument
[2]- [6] were based on Heisenberg uncertainty principle according to which
the position r and the momentum p of said particle cannot both be measured
exactly at the same time.

By introducing the standard deviations ∆r and ∆p, the uncertainty prin-
ciple is generally written in the form

∆r∆p ≥ 1

2
~, (159)

which is easily derivable via the vacuum expectation value of the canoni-
cal commutation rule

∆r∆p ≥ | 1
2i
< ψ| [r, p] |ψ > | = 1

2
~. (160)

Standard deviations have the known form (see, e.g., Ref. [79]) with
~ = 1

∆r =
√
< ψ(r)|[ r − (< ψ(r)| r |ψ(r) >)]2|ψ(r) >,

∆p =
√
< ψ(p)| [p− (< ψ(p)| p |ψ(p) >)]2|ψ(p) >,

(161)
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where ψ(r) and ψ(p) are the wavefunctions in coordinate and momentum
spaces, respectively.

We consider now an extended particle, this time, in interior condi-
tions, e.g., in the core of a star, classically represented by the iso-Euclidean
isospace Ê(r̂, δ̂, Î) with isounit Î = 1/T̂ > 0, isocoordinates r̂ = rÎ , isomet-
ric

δ̂ = T̂ δ, (162)

and isotopic element (4)) under conditions (5).
For simplicity, we assume that the extended particle has no Hamilto-

nian interactions due to the dominance of the latter interactions over the
former.

Consequently, we can represent the extended particle in the isospace Ĥ
over the isofield Ĉ and introduce the time independent isoplanewave [18]

ψ̂(r̂) = ψ̃(r̂)Î =

= N̂ ? (êî?k̂?r̂)Î = N(eikT̂ r̂)Î ,

(163)

where N̂ = NÎ is an isonormalization isoscalar, k̂ = kÎ is the isowavenumber,
and the isoexponentiation is given by Eq. (I-22) [26].

The corresponding representation in isomomentum isospace is given
by

ψ̃(p̂) = M̂ ? êî?n̂?p̂, (164)

where M̂ = MÎ is an isonormalization isoscalar and n̂ = nÎ is the isowave-
number in isomomentum isospace.

The isopropability isofunction is then given by (Ref. [30] page 99)

P̂ = <̂| ? |>̂ =< ψ̂(r̂)| T |ψ̂(r̂) > I, (165)

that, written in terms of isointegrals (Ref. [29] page 354), becomes∫ +∞
−∞ ψ̂(r̂)† ? ψ̂(r̂) ? d̂r̂ =

=
∫ +∞
−∞ ψ̃(r̂)†ψ̃(r̂)(dr + rT̂ dÎ),

(166)

where one should keep in mind that the isodifferential d̂r̂ given by Eqs.
(I-29).
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The isoexpectation isovalues of a Hermitean operator Q̂ are then given
by [30]

<̂| ? Q̂ ? |>̂ =< ψ̂(r̂)| ? Q̂ ? |ψ̂(r̂) >=

=
∫ +∞
−∞ ψ̂(r̂)† ? Q̂ ? ψ̂(r̂)d̂r̂ =

=
∫ +∞
−∞ ψ̃(r̂)†Q̂ψ̃(r̂)d̂r̂,

(167)

with corresponding expressions for the isoexpectation isovalues in isomo-
mentum isospace.

Santilli then introduced apparently for the first time in Ref. [11] the
isotopic operator

T̂ = T̂ Î = I, (168)

that, despite its seemingly irrelevant value, is indeed the correct operator
formulation of the isotopic element for the “completion” of the isoproduct
from its scalar form (1) to the isoscalar form

n̂2̂ = n̂ ? n̂ = n̂ ? T̂ ? n̂ = n2I. (169)

In Sections 3.6, 3.7, we have shown that the Lie-Santilli isosymmetry
ŜU(2) admits an explicit and concrete realization of hidden variables that
allowed the construction of identical classical counterparts for interior dy-
namical systems.

Ref. [11] introduced the isoexpectation isovalue of the isotopic opera-
tor

<̂| ? T̂ ? |>̂ =< ψ̂(r̂)| ? T̂ ? |ψ̂(r̂) > Î =

=
∫ +∞
−∞ ψ̃(r̂)†T̂ ψ̃(r̂)d̂r̂,

(170)

and assumed the isonormalization (again, intended for diagonal matrix
elements)

<̂| ? T̂ ? |>̂ =

=
∫ +∞
−∞ ψ̂(r̂)†T̂ ψ̂(r̂)d̂r̂ = T̂ .

(171)

Consider then the isostandard isodeviation for isocoordinates ∆r̂ = ∆rÎ
and isomomenta ∆p̂ = ∆pÎ , where ∆r and ∆p are the standard deviations
in our space.

By using isocanonical isocommutation rules (I-81), we obtain the ex-
pression

∆r̂ ?∆p̂ = ∆r∆pÎ ≈ 1
2
| < ψ̂(r̂)| ? [r̂̂,p̂] ? ψ̂(r̂) > |Î =

= 1
2
| < ψ̂(r̂)|T̂ [r̂̂,p̂] T̂ |ψ̂(r̂) > Î,

(172)
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One should note the replacement of the symbol ≥ in Eq. (160) with the
symbol ≈ in Eq. (172). This is due to the fact that the historical arguments
applying for a point-like particle in vacuum no longer apply for an inte-
rior system because the pressure exercised by the medium on the particle
(Figure 4) reduce the lower limit of Eq. (160) to the approximate value of
Eq. ( 172).

Under the above assumptions, by eliminating the common isounit Î ,
Ref. [11] achieved the desired result here called isodeterministic isoprinciple

∆r∆p ≈ 1
2
| < ψ̂(r̂)| ? [r̂̂,p̂] ? |ψ̂(r̂) >=

= 1
2
| < ψ̂(r̂)|T̂ [r̂̂,p̂] T̂ |ψ̂(r̂) >=

1
2

∫ +∞
−∞ ψ̂(r̂)†T̂ ψ̂(r̂)d̂r̂ = 1

2
T � 1

(173)

where the property ∆r∆p � 1 follows from the fact that the isotopic
element T̂ has values smaller than 1 in the fitting of all experimental data
dealing with hadronic media such as hadrons, nuclei and stars, and null
value for gravitational collapse [31].

In the event Eq. (35), page 14 of Ref. [11] should be compatible with
Eq. (173) above, it is sufficient to turn into a comma the sign = in the right
of the central expression of Eq. (35), or absorb the factor 1/2 of Eq. (173)
into the isorenormalization.

In this way, thanks to a laborious scientific journey initiated at Harvard
University in late 1977, and thanks to contributions by numerous mathe-
maticians, theoreticians and experimentalists, Santilli reached the follow-
ing verification of the EPR argument [11]:

LEMMA 3.7 (ISODETERMINISTIC PRINCIPLE): The isostandard isodeviations
for isocoordinates ∆r̂ and isomomenta ∆p̂, as well as their product, progressively
approach classical determinism for extended particles in the interior of hadrons,
nuclei, and stars, and achieve classical determinism at the extreme densities in
the interior of gravitational collapse.

PROOF: Define the isostandard isodeviations via the following isotopy
of quantum mechanical expressions (161) (where we ignore the common
multiplication by the isounit)

∆r =

√
< ψ̂(r̂)|[ r̂− < ψ̂(r̂)| ? r̂ ? |ψ̂(r̂) >]2̂̂|ψ(r̂) >,

∆p =

√
< ψ̂(p̂)| [p̂− < ψ̂(p̂)| ? p̂ ? |ψ̂(p̂) >]2̂|ψ̂(p̂) >,

(174)
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where the differentiation between the isotopic elements for isocoordinates
and isomomenta is ignored for simplicity. But the isotopic element repre-
sents the interactions of the particle with the physical medium and tends
toward null values for gravitational collapse, Eqs. (I-91) (I-92). Therefore,
isosquare in expression (171) implies the expressions

∆r =

√
T̂ < ψ̂(r̂)|[ r̂− < ψ̂(r̂)| ? r̂ ? |ψ̂(r̂) >]2|ψ̂(r̂) >,

∆p =

√
T̂ < ψ̂(p̂)| [p̂− < ψ̂(p̂)| ? p̂ ? |ψ̂(p̂) >]2|ψ̂(p̂) >,

(175)

that approach indeed null value under the indicated limit conditions of
gravitational collapse

LimT̂=0∆r = 0,

LimT̂=0∆p = 0,
(176)

Q.E.D.

3.9. Apparent removal of quantum divergencies.
Recall from Section I-4.13 that, under condition (I-96), corresponding to
condition (173), there is a rapid convergence of isoseries (I-97), as well
as the removal of the singularity of Dirac’s delta distribution, Eq. (I-98)
(Figure I-14).

The above properties can be now formalized according to the follow-
ing:

COROLLARY 3.7.1. Einstein’s determinism according to Lemma 3.7 implies the
removal of quantum mechanical divergencies.

PROOF. Lemma 3.7 is based on values of the isotopic element T̂ being
smaller than 1, which values imply in turn the rapid convergence of per-
turbative series without divergencies (Section I-4-13).
Q.E.D.

The removal of quantum divergencies, that have been cause of contro-
versies for about one century, illustrates the far reaching implications of
Einstein’s determinism for interior dynamical systems.

3. CONCLUDING REMARKS.
Following the study of basic methods in Paper I, in this paper we have
provided an apparent confirmation of proofs [10] [11] of the EPR argument
[1] for extended, thus deformable particles within hyperdense media with
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ensuing linear and non-linear, local and non-local and potential as well as
non-potential/non-Hamiltonian interactions.

This study has been conducted via the use of isomathematics and isome-
chanics admitting a conventional Hamiltonian H or Lagrangian L for the
invariant representation of linear, local and potential interactions, plus the
isotopic element T̂ of isoproducts A ? B = AT̂B, Eq. (1), for the invariant
representation of non-linear, non-local and non-Hamiltonian interactions.

Following the outline and upgrade of isosymmetries for time-reversal
invariant interior systems (Section 3), we have apparently confirmed the
proof of Ref. [10] according to which extended particles in interior dynam-
ical conditions admit identical classical counterpart.

We have then apparently confirmed the proof of Ref. [11] according
to which extended particles progressively approach classical determinism
when in the interior of hadrons, nuclei and stars, and achieve full deter-
minism at the limit of gravitational collapse, essentially as predicted by A.
Einstein, B. Podolsky and N. Rosen [1].

To illustrate the far reaching implications of what appears to be Ein-
stein’s most important legacy, we have shown for the first time that the re-
covering of Einstein’s determinism for interior conditions appears to im-
ply the removal of quantum divergencies due to the rapid convergence
of the isoseries of hadronic mechanics, the removal of the singularity in
Dirac’s delta distribution and other features.

A number of illustrations and novel applications in mathematics, physics
and chemistry are presented in the forthcoming Paper III.
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